Interactions of flavones and other phytochemicals with adenosine receptors.

Adv Exp Med Biol

Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes ofHealth, Bethesda, MD 20892-0810, USA.

Published: January 2003

Dietary flavonoids have varied effects on animal cells, such as inhibition of platelet binding and aggregation, inhibition of inflammation, and anticancer properties, but the mechanisms of these effects remain largely unexplained. Adenosine receptors are involved in the homeostasis of the immune, cardiovascular, and central nervous systems, and adenosine agonists/antagonists exert many similar effects. The affinity of flavonoids and other phytochemicals to adenosine receptors suggests that a wide range of natural substances in the diet may potentially block the effects of endogenous adenosine. We used competitive radioligand binding assays to screen flavonoid libraries for affinity and a computational CoMFA analysis of flavonoids to compare steric and electrostatic requirements for ligand recognition at three subtypes of adenosine receptors. Flavone derivatives, such as galangin, were found to bind to three subtypes of adenosine receptors in the microM range. Pentamethylmorin (Ki 2.65 microM) was 14- to 17-fold selective for human A3 receptors than for A1 and A2A receptors. An isoflavone, genistein, was found to bind to A1 receptors. Aurones, such as hispidol (Ki 350 nM) are selective A1 receptor antagonists, and, like genistein, are present in soy. The flavones, chemically optimized for receptor binding, have led to the antagonist, MRS 1067 (3,6-dichloro-2'-(isopropoxy)4'-methylflavone), which is 200-fold more selective for human A3 than A1 receptors. Adenosine receptor antagonism, therefore, may be important in the spectrum of biological activities reported for the flavonoids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429336PMC
http://dx.doi.org/10.1007/978-1-4757-5235-9_15DOI Listing

Publication Analysis

Top Keywords

adenosine receptors
20
receptors
9
adenosine
8
phytochemicals adenosine
8
three subtypes
8
subtypes adenosine
8
selective human
8
human receptors
8
interactions flavones
4
flavones phytochemicals
4

Similar Publications

Neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD). Transformation of pro-interleukin (IL)-1β into a mature IL-1β via active inflammasome may be related to the progression of PD. Therefore, the modification of inflammasome activity may be a potential therapeutic strategy for PD.

View Article and Find Full Text PDF

Netrin-1, an essential extracellular protein, has gained significant attention due to its pivotal role in guiding axon and cell migration during embryonic development. The fundamental significance of netrin-1 in developmental biology is reflected in its high conservation across different species as a part of the netrin family. The bifunctional nature of netrin-1 demonstrates its functional versatility, as it can function as either a repellent or an attractant according to the context and the expressed receptors on the target cells including the deleted in colorectal cancer (DCC), the uncoordinated-5 (UNC5), DSCAM, Neogenin-1, Adenosine A2b and Draxin receptors.

View Article and Find Full Text PDF

Introduction: Acute coronary syndrome (ACS) patients undergoing primary percutaneous coronary intervention (PPCI) often experience the no-reflow phenomenon (NRP), characterized by reduced myocardial perfusion despite an open coronary artery. Adenosine, a potent vasodilator, is used to aid reperfusion. To elucidate underlying molecular mechanism of this phenomenon, we investigated expression of ADORA2A and ADORA2B genes, encoding adenosine receptors, in ACS patients with NRP and non-NRP.

View Article and Find Full Text PDF

Activation of PLCβ enzymes by G and G proteins is a common mechanism to trigger cytosolic Ca increase. We and others reported that G inhibitor FR900358 (FR) can inhibit both and G - and, surprisingly, G -mediated intracellular Ca mobilization. Thus, the G -G -PLCβ-Ca signaling axis depends entirely on the presence of active G , which reasonably explained FR-inhibited G -induced Ca release.

View Article and Find Full Text PDF

Insect gustatory receptors play a critical role in modulating feeding behaviors by detecting external nutritional cues through complex biochemical pathways. Bitter taste receptors are essential for insects to identify and avoid toxins. However, the detailed molecular and cellular mechanisms by which these receptors influence insect feeding behavior remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!