Detection methods for genetically modified organisms (GMOs) are necessary for many applications, from seed purity assessment to compliance of food labeling in several countries. Numerous analytical methods are currently used or under development to support these needs. The currently used methods are bioassays and protein- and DNA-based detection protocols. To avoid discrepancy of results between such largely different methods and, for instance, the potential resulting legal actions, compatibility of the methods is urgently needed. Performance criteria of methods allow evaluation against a common standard. The more-common performance criteria for detection methods are precision, accuracy, sensitivity, and specificity, which together specifically address other terms used to describe the performance of a method, such as applicability, selectivity, calibration, trueness, precision, recovery, operating range, limit of quantitation, limit of detection, and ruggedness. Performance criteria should provide objective tools to accept or reject specific methods, to validate them, to ensure compatibility between validated methods, and be used on a routine basis to reject data outside an acceptable range of variability. When selecting a method of detection, it is also important to consider its applicability, its field of applications, and its limitations, by including factors such as its ability to detect the target analyte in a given matrix, the duration of the analyses, its cost effectiveness, and the necessary sample sizes for testing. Thus, the current GMO detection methods should be evaluated against a common set of performance criteria.
Download full-text PDF |
Source |
---|
Syst Rev
January 2025
Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, Postal Code, 35516, Egypt.
Background: Hydrophilic monomer 2-hydroxyethyl methacrylate (HEMA)-free adhesive systems are gaining increasing popularity nowadays. Although the addition of HEMA to dental adhesives improves dentin wettability and resin diffusion into demineralized collagen fibrils, HEMA's high hydrophilicity can lead to hydrolytic degradation of the adhesive interface. Thus, HEMA-free adhesive systems have been developed.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Department of Neurology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan.
Background: Intracerebral amyloid β (Aβ) accumulation is considered the initial observable event in the pathological process of Alzheimer's disease (AD). Efficient screening for amyloid pathology is critical for identifying patients for early treatment. This study developed machine learning models to classify positron emission tomography (PET) Aβ-positivity in participants with preclinical and prodromal AD using data accessible to primary care physicians.
View Article and Find Full Text PDFBMC Psychol
January 2025
Faculty of psychology and educational sciences, University of Tabriz, Tabriz, Iran.
Background: Autism spectrum disorder (ASD) is characterized by impairments in social communication and interaction, restricted and repetitive patterns of behavior, and sensory processing abnormalities. These core features are often accompanied by comorbid anxiety disorders. However, the sequence and mechanisms of these associations warrant further investigation.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Radiology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), No. 79 Kangning Road, Zhuhai, 519000, Guangdong Province, China.
Background: Besides tumorous information, synergistic liver parenchyma assessments may provide additional insights into the prognosis of hepatocellular carcinoma (HCC). This study aimed to investigate whether 3D synergistic tumor-liver analysis could improve the prediction accuracy for HCC prognosis.
Methods: A total of 422 HCC patients from six centers were included.
J Transl Med
January 2025
Department of Endocrine Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201306, Chin, China.
Background And Objective: Mitochondria are crucial to the function of renal tubular cells, and their dynamic perturbation in many aspects is an important mechanism of diabetic kidney disease (DKD). Single-nucleus RNA sequencing (snRNA-seq) technology is a high-throughput sequencing analysis technique for RNA at the level of a single cell nucleus. Here, our DKD mouse kidney single-cell RNA sequencing conveys a more comprehensive mitochondrial profile, which helps us further understand the therapeutic response of this unique organelle family to drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!