Recently, we reported that the minor regulated and constitutive-like pathways are the main source of resting secretion by parotid acinar cells. Using tissue lobules biosynthetically labeled with [(35)S]amino acids, we now show that discharge of the minor regulated pathway precedes granule exocytosis stimulated by isoproterenol (> or =1 microM) or carbachol (2 microM). Stimulation of the minor regulated pathway by 40 nM carbachol as well as altering its trafficking, either by adding brefeldin A or by incubating in K(+)-free medium, cause potentiation of amylase secretion stimulated by isoproterenol, suggesting that the minor regulated pathway contributes to the mechanism of potentiation. Both exocytosis of the minor regulated pathway and the potentiation-inducing treatments induce relocation of immunostained subapical puncta of the SNARE protein syntaxin 3 into the apical plasma membrane. Rab11 and possibly VAMP2 may be concentrated in the same relocating foci. These results suggest that the minor regulated pathway and granule exocytosis are functionally linked and that the minor regulated pathway has a second role beyond contributing to resting secretion - providing surface docking/fusion sites for granule exocytosis. In the current model of salivary protein export, discharge of the minor regulated pathway by either beta-adrenergic or cholinergic stimulation is an obligatory first step. Ensuing granule exocytosis is controlled mainly by beta-adrenergic stimulation whereas cholinergic stimulation mainly regulates the number of surface sites where release occurs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.115.14.2963 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!