We report here the first detailed study of the dithionite reduction kinetics of a copper-containing dissimilatory nitrite reductase (NiR). The reduction of the blue type 1 copper (T1Cu) center of NiR preparations that contained both type 1 and type 2 copper atoms, followed biphasic kinetics. In contrast, NiR that was deficient in type 2 copper (T2DNiR), followed monophasic kinetics with a second-order rate constant (T2D)k = 3.06 x 10(6) m(-1) s(-1). In all cases the SO(2)(.-) radical rather than S(2)O(4)(2-) was the effective reductant. The observed kinetics were compatible with a reaction mechanism in which the T1Cu of the fully loaded protein is reduced both directly by dithionite and indirectly by the type 2 Cu (T2Cu) site via intramolecular electron transfer. Reduction kinetics of the T2Cu were consistent with SO(2)(.-) binding first to the T2Cu center and then transferring electrons (112 s(-1)) to reduce it. As SO(2)(.-) is a homologue of NO(2)(-), the NiR substrate, it is not unlikely that it binds to the catalytic T2Cu site. Effects on the catalytic activity of the enzyme using dithionite as a reducing agent are discussed. Reduction of the semireduced T1Cu(I)T2Cu(II) state followed either second-order kinetics with k(2) = 3.33 x 10(7) m(-1) s(-1) or first-order kinetics with 52.6 s(-1) < (T1red)k(1) < 112 s(-1). Values of formation constants of the T1Cu(II)T2Cu(II)-SO(2)(.-) and T1Cu(I)T2Cu(II)-SO(2)(.-) adducts showed that the redox state of T1Cu affected binding of SO(2)(.-) at the catalytic T2Cu center. Analysis of the kinetics required the development of a mathematical protocol that could be applied to a system with two intercommunicating sites but only one of which can be monitored. This novel protocol, reported for the first time, is of general application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M204305200 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Department of Electronic Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
In this study, we investigate the origins of low-frequency noise (LFN) and 1/ noise in CuO thin-film transistors (TFTs). The static direct current (DC) - characterization demonstrates that the channel resistance () contributes significantly to mobility degradation in the TFTs, with channel thickness () controlled through the plasma-enhanced atomic layer deposition (PEALD) process. The 1/ noise followed the Hooge mobility fluctuation (HMF) model, and it was observed that both Coulomb and phonon scattering within the channel, which increased with a decrease in , contributed simultaneously.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
Salmonella enterica serovar 4,[5],12:i:- sequence type 34 (ST34) has recently become a global concern for public and animal health. The acquisition of mobile genetic element ICEmST, which contains two copper tolerance gene clusters, cus and pco, influences the epidemic success of this clone. Copper is used as a feed additive in swine at levels that potentially lead to selection pressure for Enterobacteriaceae; however, it remains unclear whether the copper tolerance system of ICEmST functions in vivo.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
A novel metal-organic framework (MOF), (Cu-S)MOF, with a copper-sulfur planar structure was applied to photocatalytic H production application. (Cu-S)MOF@ZnS nanocomposite was synthesized using a microwave-assisted hydrothermal approach. The formation of (Cu-S)MOF and wurtzite ZnS in the composite nanoparticles was analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FESEM), and high-resolution transmission electron microscope (HRTEM).
View Article and Find Full Text PDFJ Xenobiot
December 2024
Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa.
The direct discharge of cationic surfactants into environmental matrices has exponentially increased due to their wide application in many products. These compounds and their degraded products disrupt microbial dynamics, hinder plant survival, and affect human health. Therefore, there is an urgent need to develop electroanalytical assessment techniques for their identification, determination, and monitoring.
View Article and Find Full Text PDFInorg Chem
December 2024
Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
In this research, a hollow mesoporous responsive nanomotor was proposed for enhanced photothermal/immunotherapy under near infrared (NIR) irradiation. HA-HMCuS/AS as the nanomotor composed of hollow mesoporous copper sulfide (HMCuS) loaded with artesunate (AS) and hyaluronic acid (HA) was utilized to induce the polarization of tumor-associated macrophages. At the beginning, ResNet18 deep learning model was utilized to predict the Brunauer-Emmett-Teller (BET) surface area of HMCuS based on the morphology data set which was obtained from our conventional research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!