A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

S-nitroso human serum albumin treatment reduces ischemia/reperfusion injury in skeletal muscle via nitric oxide release. | LitMetric

Background: Peroxynitrite generated from nitric oxide (NO) and superoxide (O2-) contributes to ischemia/reperfusion (I/R) injury. Feedback inhibition of endothelial NO synthase by NO may inhibit O2- production generated also by endothelial NO synthase at diminished local L-arginine concentrations accompanying I/R.

Methods And Results: During hindlimb I/R (2.5 hours/2 hours), in vivo NO was monitored continuously (porphyrinic sensor), and high-energy phosphates, reduced and oxidized glutathione (chromatography), and I/R injury were measured intermittently. Rabbits receiving human serum albumin (HSA) (controls) were compared with those receiving S-nitroso human serum albumin (S-NO-HSA) beginning 30 minutes before reperfusion for 1 hour or 30 minutes before ischemia for 3.5 hours (0.1 micromol x kg(-1) x h(- 1)). The onset of ischemia led to a rapid increase of NO from its basal level (50+/-12 nmol/L) to 120+/-20 and 220+/-15 nmol/L in the control and S-NO-HSA-treated groups, respectively. In control animals, NO dropped below basal levels at the end of ischemia and to undetectable levels (<1 nmol/L) during reperfusion. In S-NO-HSA-treated animals, maximal NO levels never decreased below basal concentration and on reperfusion were 100+/-15 nmol/L (S-NO-HSA preischemia group, 175+/-15 nmol/L). NO supplementation by S-NO-HSA led to partial and in the preischemia group to total preservation of high-energy phosphates and glutathione status in reperfused muscle (eg, preischemia groups: ATP, 30.23+/-5.02 micromol/g versus control, 15.75+/-4.33 micromol/g, P<0.0005; % oxidized glutathione, 4.49+/- 1.87% versus control, 22.84+/-6.39%, P<0.0001). S-NO-HSA treatment in all groups led to protection from vasoconstriction and reduced edema formation after reperfusion (eg, preischemia groups: interfiber area, 12.94+/-1.36% versus control, 27.83+/-1.95%, P< 0.00001).

Conclusions: Long-lasting release of NO by S-NO-HSA provides significant protection of skeletal muscle from I/R injury.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.cir.0000018745.11739.9bDOI Listing

Publication Analysis

Top Keywords

human serum
12
serum albumin
12
s-nitroso human
8
nitric oxide
8
i/r injury
8
endothelial synthase
8
albumin treatment
4
treatment reduces
4
reduces ischemia/reperfusion
4
ischemia/reperfusion injury
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!