The nature of the control of glycolytic flux is one of the central, as-yet-uncharacterized issues in cellular metabolism. We developed a molecular genetic tool that specifically induces ATP hydrolysis in living cells without interfering with other aspects of metabolism. Genes encoding the F(1) part of the membrane-bound (F(1)F(0)) H(+)-ATP synthase were expressed in steadily growing Escherichia coli cells, which lowered the intracellular [ATP]/[ADP] ratio. This resulted in a strong stimulation of the specific glycolytic flux concomitant with a smaller decrease in the growth rate of the cells. By optimizing additional ATP hydrolysis, we increased the flux through glycolysis to 1.7 times that of the wild-type flux. The results demonstrate why attempts in the past to increase the glycolytic flux through overexpression of glycolytic enzymes have been unsuccessful: the majority of flux control (>75%) resides not inside but outside the pathway, i.e., with the enzymes that hydrolyze ATP. These data further allowed us to answer the question of whether catabolic or anabolic reactions control the growth of E. coli. We show that the majority of the control of growth rate resides in the anabolic reactions, i.e., the cells are mostly "carbon" limited. Ways to increase the efficiency and productivity of industrial fermentation processes are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC135175PMC
http://dx.doi.org/10.1128/JB.184.14.3909-3916.2002DOI Listing

Publication Analysis

Top Keywords

glycolytic flux
16
escherichia coli
8
atp hydrolysis
8
growth rate
8
anabolic reactions
8
control growth
8
flux
6
glycolytic
5
flux escherichia
4
coli controlled
4

Similar Publications

Human papillomavirus (HPV)‑positive and -negative head and neck squamous cell carcinoma (HNSCC) are often associated with activation of the phosphatidylinositol 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway due to mutations or amplifications in , loss of or activation of receptor tyrosine kinases. In HPV‑negative tumors, (encoding p16 protein) inactivation or (encoding Cyclin D1 protein) amplification frequently results in sustained cyclin‑dependent kinase (CDK) 4/6 activation. The present study aimed to investigate the efficacy of the CDK4/6 inhibitors (CDKi) palbociclib and ribociclib, and the PI3K/Akt/mTOR pathway inhibitors (PI3Ki) gedatolisib, buparlisib and alpelisib, in suppressing cell viability of HPV‑positive and ‑negative HNSCC cell lines.

View Article and Find Full Text PDF

Lactate dehydrogenase plays a key role in alleviating hypoxia during prolonged submergence. To explore the function of the OsLdh7 gene in enhancing submergence tolerance, we overexpressed this gene in rice (Oryza sativa cv. IR64) and subjected the transgenic lines to complete inundation.

View Article and Find Full Text PDF

Human primary (hpBMEC) and induced pluripotent stem cell (iPSC)-derived brain microvascular endothelial-like cells (hiBMEC) are interchangeably used in blood-brain barrier models to study neurological diseases and drug delivery. Both hpBMEC and hiBMEC use glutamine as a source of carbon and nitrogen to produce metabolites and build proteins essential to cell function and communication. We used metabolomic, transcriptomic, and computational methods to examine how hpBMEC and hiBMEC metabolize glutamine, which may impact their utility in modeling the blood-brain barrier.

View Article and Find Full Text PDF

FOSL1 transcriptionally dictates the Warburg effect and enhances chemoresistance in triple-negative breast cancer.

J Transl Med

January 2025

Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China.

Background: Dysregulated energy metabolism has emerged as a defining hallmark of cancer, particularly evident in triple-negative breast cancer (TNBC). Distinct from other breast cancer subtypes, TNBC exhibits heightened glycolysis and aggressiveness. However, the transcriptional mechanisms of aerobic glycolysis in TNBC remains poorly understood.

View Article and Find Full Text PDF

PEROXYNITRITE IS INVOLVED IN THE MITOCHONDRIAL DYSFUNCTION INDUCED BY SORAFENIB IN LIVER CANCER CELLS.

Free Radic Biol Med

December 2024

Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain; Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain. Electronic address:

Background: Sorafenib is a tyrosine kinase inhibitor (TKI) that belongs to the landscape of treatments for advanced stages of hepatocellular carcinoma (HCC). The induction of cell death and cell cycle arrest by Sorafenib has been associated with mitochondrial dysfunction in liver cancer cells. Our research aim was to decipher underlying oxidative and nitrosative stress induced by Sorafenib leading to mitochondrial dysfunction in liver cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!