AI Article Synopsis

  • The study investigates the role of tubular epithelial cells (TEC) in kidney diseases, focusing on their ability to undergo epithelial-mesenchymal transformation (EMT) and produce extracellular matrix (ECM) proteins.
  • Findings demonstrated that TECs exhibited markers of proliferation, phenotype changes, and ECM production across various renal diseases, supporting the hypothesis that they can turn into collagen-producing cells.
  • Results indicate a significant correlation between EMT features in TECs, serum creatinine levels, and the extent of interstitial damage, suggesting their involvement in kidney fibrosis.

Article Abstract

Background: In recent studies performed on cultured cells and experimental nephropathies, it has been hypothesized that tubular epithelial cells (TEC), via epithelial-mesenchymal transformation (EMT), can become collagen-producing cells. According to this theory, they should proceed through several activating steps, such as proliferation and phenotype changes, to eventually synthesize extracellular matrix (ECM).

Methods: To evaluate whether EMT operates in human TECs, 133 renal biopsies of different renal diseases were studied, analyzing by immunohistochemistry and in situ hybridization the possible expression of markers of proliferation (PCNA, Mib-1), cellular phenotype (vimentin, alpha-SMA, cytokeratin, ZO-1) and ECM production (prolyl 4-hydroxylase, HSP47, interstitial collagens).

Results: Independently of histological diagnosis, variable degrees of TEC positivity for PCNA (2.7 +/- 2.4 cells/field) and Mib-1 (1.9 +/- 2.3) were present. TECs expressing vimentin (1.4 +/- 4.7) and alpha-smooth muscle actin (alpha-SMA; 0.04 +/- 0.4) also were detected. It was possible to observe loss of epithelial antigens from 8 to 10% of the tubular cross sections. Moreover, TECs were stained by prolyl 4-hydroxylase (3.6 +/- 4.3), heat shock protein-47 (HSP47; 2.9 +/- 5.4), collagen type I (0.2 +/- 2.7) and type III (0.3 +/- 2.0). Collagen types I and III mRNAs were found in 0.8 to 1.4 cells/field. The number of TEC with EMT features were associated with serum creatinine and the degree of interstitial damage (P< or = 0.03), and even considering the 45 cases with mild interstitial lesions, the tubular expression of all markers remained strictly associated with renal function (P< or = 0.01).

Conclusions: Our results suggest that, via transition to a mesenchymal phenotype, TEC can produce ECM proteins in human disease and directly intervene in the fibrotic processes. Moreover, the association of EMT features with serum creatinine supports the value of these markers in the assessment of disease severity.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1523-1755.2002.00430.xDOI Listing

Publication Analysis

Top Keywords

tubular epithelial
8
epithelial cells
8
renal biopsies
8
expression markers
8
prolyl 4-hydroxylase
8
+/-
8
+/- collagen
8
emt features
8
serum creatinine
8
epithelial-mesenchymal transition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!