The Arabidopsis GA1 gene encodes copalyl diphosphate synthase, which catalyzes the first committed step in the gibberellin biosynthetic pathway. Previous studies indicated that the expression pattern of the GA1 gene is tissue-specific and cell-type-specific during development. Here we showed that expression of GA1 cDNA driven by the 2.4 kb 5'-upstream sequence plus the GA1 genomic coding region into the third exon was able to rescue the gal-3 mutant phenotype. To understand the mechanism controlling GA1 gene expression, cis-regulatory regions in the GA1 promoter were identified by promoter deletion analysis with the GA1-beta-glucuronidase (GUS) gene fusion system. The second intron and the region from -1391 to -997, with respect to the translation initiation site, positively regulate overall GA1-GUS expression level in all tissues examined. Several additional regulatory regions are involved in GA1-GUS expression in all the stages except in seeds: two positive regulatory regions in the first intron and the sequence between -425 and -207, and a negative regulatory region between -1848 and -1391. We also found that the region between -997 and -796 is essential for a high level of GA1 expression in developing seeds.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1015592122142DOI Listing

Publication Analysis

Top Keywords

ga1 gene
12
cis-regulatory regions
8
gibberellin biosynthetic
8
ga1
8
ga1-gus expression
8
regulatory regions
8
expression
6
gene
5
characterization cis-regulatory
4
regions
4

Similar Publications

Cell elongation and altered phytohormone levels play a role in establishing distyly in Averrhoa carambola.

Gene

December 2024

Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long Term Scientific Research Base for Fujian Orchid Conservation, Straits Flower Industry Highland, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

The flowers of distylous plants exhibit two distinct morphologies that facilitate precise pollen transfer. Averrhoa carambola, a woody plant characterized by distyly, has an unclear molecular regulatory mechanism underlying this trait. Its prolonged flowering period and substantial flower production render it an excellent model for investigating the distylous syndrome.

View Article and Find Full Text PDF

Discovery of 4-(2-Phenylethynyl) benzoic Acid as a Potential Potent Chemical Pruner.

Plant Cell Physiol

December 2024

Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou 310018, P.R. China.

Rocketing labor cost is a major challenge threatening agricultural sustainability and food security worldwide. The replacement of manual pruning of horticultural plants with chemical pruning has long been a goal for saving cost and reducing virus spreading. Here, guided by the structure-function relationship of allelochemical benzoic acid derivatives, we have identified 4-(2-phenylethynyl)-benzoicacid (PEBA) as a highly bioactive compound.

View Article and Find Full Text PDF

Lipid metabolism may play a critical role in fueling seed germination, but the knowledge of lipid metabolism during germination is still ambiguous. Here, we hypothesize that gibberellic acid (GA) promotes germination by means of enhancing lipid mobilization in Chinese pistachio (Pistacia chinensis Bunge), a species belonging to Anacardiaceae with high oil content in its seeds. A multi-omics approach has been applied to measure lipid mobilization during seed germination, and to identify the key regulators involved in GA-mediated lipid metabolism.

View Article and Find Full Text PDF

The DENSE AND ERECT PANICLE1-GRAIN NUMBER ASSOCIATED module enhances rice yield by repressing CYTOKININ OXIDASE 2 expression.

Plant Cell

December 2024

State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China.

The phytohormone cytokinin (CK) positively regulates the activity of the inflorescence meristem (IM). Cytokinin oxidase 2/Grain number 1a (OsCKX2/Gn1a)-mediated degradation of CK in rice (Oryza sativa L.) negatively regulates panicle grain number, whereas DENSE AND ERECT PANICLE 1 (DEP1) positively regulates grain number per panicle (GNP).

View Article and Find Full Text PDF

The Arabidopsis RING-Type E3 Ligase TEAR4 Controls Seed Germination by Targeting RGA for Degradation.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.

Article Synopsis
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!