To identify the underlying mechanisms that limit the mitotic potential of normal somatic cells, we have undertaken a high resolution differential proteomic analysis aimed at identifying proteins that were differentially expressed upon replicative senescence. Since replicative senescence in heterogeneous primary fibroblast cultures is asynchronous, we analysed a group of conditionally immortalized rat embryo fibroblast cell lines that have previously been shown to undergo synchronous senescence upon inactivation of SV40 tsA58 T antigen. This identified 43 spots that were differentially expressed in these cell lines. Comparison of the identity of these features with those identified in a complimentary independent differential proteomic analysis of replicative senescence, directly in primary rat embryo fibroblasts upon serial passaging, identified nine features that were in common between the two studies even though they had been conducted entirely separately. None of these proteins have previously been recognized to be involved with replicative senescence. Thus, they represent novel starting points for elucidating the underlying mechanism that regulates the finite mitotic life span of somatic cells and how it can be overcome in cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1205525 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!