Individual differences in isoluminance values were studied in infants and adults using a motion nulling paradigm. Two luminance-modulated sinusoidal grating components (spatial frequency=0.25 cpd, temporal frequency=5.6 Hz, speed=22.4 deg/s) were superimposed and moved in opposite directions across a color video screen. The contrasts of the two components were traded off to determine motion nulls. Two conditions were used: red/black vs. green/black, and red/black vs. blue/black grating components. An eye movement based response measure was used for infant subjects, and an average of 308 trials per infant were obtained. As observed in earlier studies, the mean motion null values for infants and adults were highly similar in each condition. The standard errors of motion null values for individual subjects were very small. Individual differences among infants were also small, and were clearly measurable only in the red/black vs. blue/black condition. The close similarity of mean null values, combined with the small individual differences among infants, supports the idea that under the right circumstances mean adult isoluminance values can be used as a sufficient approximation to individual infant isoluminance values in studies of infant color vision. These circumstances are discussed and evaluated in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0042-6989(02)00089-5DOI Listing

Publication Analysis

Top Keywords

isoluminance values
16
individual differences
12
null values
12
adult isoluminance
8
values sufficient
8
sufficient approximation
8
approximation individual
8
individual infant
8
infants adults
8
grating components
8

Similar Publications

Much progress has been made in understanding how the brain combines signals from the two eyes. However, most of this work has involved achromatic (black and white) stimuli, and it is not clear if the same processes apply in color-sensitive pathways. In our first experiment, we measured contrast discrimination ("dipper") functions for four key ocular configurations (monocular, binocular, half-binocular, and dichoptic), for achromatic, isoluminant L-M and isoluminant S-(L+M) sine-wave grating stimuli (L: long-, M: medium-, S: short-wavelength).

View Article and Find Full Text PDF

The phenomenon of binocular luster can be evoked by simple dichoptic center-surround stimuli showing a luminance contrast difference between the eyes. Previous findings support the idea that this phenomenon is mediated by a low-level conflict mechanism that integrates the monocular signals from different types of contrast detector cells. Also, isoluminant stimuli with different chromatic contrasts between eyes can trigger sensations of luster.

View Article and Find Full Text PDF

Image decolorization is an image pre-processing step which is widely used in image analysis, computer vision, and printing applications. The most commonly used methods give each color channel (e.g.

View Article and Find Full Text PDF

Several studies have revealed that results of the TNO stereo test may overestimate the stereoacuity value (the less the better) compared with other testing measurements. The manner in which vision is divided among two eyes of a person wearing anaglyph glasses may play an important role. This study aimed to examine the effect of anaglyph glasses on stereopsis measurements.

View Article and Find Full Text PDF

We report empirical study results on the color encoding of ensemble scalar and orientation to visualize diffusion magnetic resonance imaging (DMRI) tubes. The experiment tested six scalar colormaps for average fractional anisotropy (FA) tasks (grayscale, blackbody, diverging, isoluminant-rainbow, extended-blackbody, and coolwarm) and four three-dimensional (3D) spherical colormaps for tract tracing tasks (uniform gray, absolute, eigenmaps, and Boy's surface embedding). We found that extended-blackbody, coolwarm, and blackbody remain the best three approaches for identifying ensemble average in 3D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!