A cytotoxic enterotoxin (Act) of Aeromonas hydrophila is an important virulence factor with hemolytic, cytotoxic and enterotoxic activities. In this report, we demonstrated Act rapidly mobilized calcium from intracellular stores and evoked influx of calcium from the extracellular milieu in macrophages. A direct role of calcium in Act-induced prostaglandin (e.g. PGE(2)) and tumor necrosis factor alpha (TNF alpha) production was demonstrated in macrophages using a cell-permeable calcium chelator BAPTA-AM, which also down-regulated activation of transcription factor NF-kappa B. We showed that Act's capacity to increase PGE(2) and TNF alpha production could be blocked by inhibitors of tyrosine kinases and protein kinase A. In addition, Act caused up-regulation of the DNA repair enzyme redox factor-1 (Ref-1), which potentially could promote DNA binding of the transcription factors allowing modulation of various genes involved in the inflammatory response. Taken together, a link between Act-induced calcium release, regulation of downstream kinase cascades and Ref-1, and activation of NF-kappa B leading to PGE(2) and TNF alpha production was established. Since Act also caused extensive tissue damage, we showed that Act increased reactive oxygen species, and the antioxidant N-acetyl cysteine, blocked Act-induced PGE(2) and TNF alpha production, as well as NF-kappa B nuclear translocation in macrophages. We have demonstrated for the first time early cell signaling initiated in eukaryotic cells by Act, which leads to various biological effects associated with this toxin.

Download full-text PDF

Source
http://dx.doi.org/10.1006/mpat.2001.0490DOI Listing

Publication Analysis

Top Keywords

tnf alpha
16
alpha production
16
pge2 tnf
12
early cell
8
cell signaling
8
cytotoxic enterotoxin
8
enterotoxin aeromonas
8
aeromonas hydrophila
8
calcium
5
alpha
5

Similar Publications

We aimed to investigate the wound-healing, antioxidant, and anti-inflammatory effects of pterostilbene (PTS) on human gingival fibroblasts (GF). Different concentrations of PTS were applied to GFs and cell viability was evaluated by MTT assay. GFs were stimulated by lipopolysaccharide (LPS) and the study groups were determined as LPS, LPS + 1 μM PTS, LPS + 10 μM PTS, and control.

View Article and Find Full Text PDF

Intestinal barrier damage causes an imbalance in the intestinal flora and microbial environment, promoting a variety of gastrointestinal diseases. This study aimed to explore the mechanism by which adipose-derived stem cells (ADSCs) repair intestinal barrier damage. The human colon adenocarcinoma cell line Caco-2 and rats were treated with lipopolysaccharide (LPS) to establish in vitro and in vivo models, respectively, of intestinal barrier damage.

View Article and Find Full Text PDF

Deciphering the most promising strategy for the evolution of cancer patient management remains a multifaceted, challenging affair to date. Additionally, such approaches often lead to microbial infections as side effects, probably due to the compromised immunity of the patients undergoing such treatment. Distinctly, this work delineates a rational combinatorial strategy harnessing stereogenic harmony in the diphenylalanine fragment, tethering it to an amphiphile 12-hydroxy-lauric acid at the N-terminus (compounds -) such that a potential therapeutic could be extracted out from the series.

View Article and Find Full Text PDF

The alleviation by wheat and oat dietary fiber alone or combined of T2DM symptoms in / mice.

Food Funct

January 2025

Academy of National Food and Strategic Reserves Administration, Beijing, China.

The effects of wheat and oat dietary fiber (DF) alone or combined on T2DM remain unclear. In this research, / diabetic mice were fed with diets containing 10% insoluble wheat dietary fiber (WDF), 10% insoluble oat dietary fiber (ODF), and 10% WODF (mixture of WDF and ODF, WDF : ODF = 1 : 1) for 8 weeks. The results showed that WDF, ODF, and WODF all reduced the body weight and fasting blood glucose (FBG) and improved oral glucose tolerance in / mice.

View Article and Find Full Text PDF

Prussian Blue Nanozyme Featuring Enhanced Superoxide Dismutase-like Activity for Myocardial Ischemia Reperfusion Injury Treatment.

ACS Nano

January 2025

Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.

The blood flow, when restored clinically following a myocardial infarction (MI), disrupts the physiological and metabolic equilibrium of the ischemic myocardial area, resulting in secondary damage termed myocardial ischemia-reperfusion injury (MIRI). Reactive oxygen species (ROS) generation and inflammatory reactions stand as primary culprits behind MIRI. Current strategies focusing on ROS-scavenging and anti-inflammatory actions have limited remission of MIRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!