The primary component of amyloid plaque in the brains of Alzheimer's patients is the 42 residue amyloid-beta-peptide (Abeta42). Although the amino acid residue sequence of Abeta42 is known, the molecular determinants of Abeta amyloidogenesis have not been elucidated. To facilitate an unbiased search for the sequence determinants of Abeta aggregation, we developed a genetic screen that couples a readily observable phenotype in E. coli to the ability of a mutation in Abeta42 to reduce aggregation. The screen is based on our finding that fusions of the wild-type Abeta42 sequence to green fluorescent protein (GFP) form insoluble aggregates in which GFP is inactive. Cells expressing such fusions do not fluoresce. To isolate variants of Abeta42 with reduced tendencies to aggregate, we constructed and screened libraries of Abeta42-GFP fusions in which the sequence of Abeta42 was mutated randomly. Cells expressing GFP fusions to soluble (non-aggregating) variants of Abeta42 exhibit green fluorescence. Implementation of this screen enabled the isolation of 36 variants of Abeta42 with reduced tendencies to aggregate. The sequences of most of these variants are consistent with previous models implicating hydrophobic regions as determinants of Abeta42 aggregation. Some of the variants, however, contain amino acid substitutions not implicated in pre-existing models of Abeta amyloidogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0022-2836(02)00399-6 | DOI Listing |
J Neurochem
January 2025
Center for Protein Diagnostics (PRODI) Biospectroscopy, Ruhr University Bochum, Bochum, Germany.
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Drug and Health Sciences, University of Catania, Catania, Italy; Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy. Electronic address:
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and memory loss. A critical aspect of AD pathology is represented by oxidative stress, which significantly contributes to neuronal damage and death. Microglia and astrocytes, the primary glial cells in the brain, are crucial for managing oxidative stress and supporting neuronal function.
View Article and Find Full Text PDFAlzheimers Dement (Amst)
January 2025
Neurochemistry Neurocode USA Inc Bellingham USA.
Introduction: We evaluated the diagnostic performance of two commercial plasma p-tau217 immunoassays compared to cerebrospinal fluid (CSF) testing and neuropathology.
Methods: One hundred and seventy plasma samples from the University of British Columbia Hospital Clinic for Alzheimer's (AD) and Related Disorders were analyzed for p-tau217 using Fujirebio and ALZpath assays. Decision points were determined using CSF testing and autopsy findings as the standard.
Introduction: Little is known about the factors underpinning discordant cerebrospinal fluid (CSF) amyloid beta (Aβ) versus p-tau181/Aβ or CSF Aβ versus Aβ positron emission tomography (PET).
Methods: We stratified 570 non-demented Alzheimer's Disease Neuroimaging Initiative (ADNI) participants by Aβ PET and further by CSF Aβ or p-tau181/Aβ. We used analysis of covariance testing adjusting for covariates, followed by Tukey post hoc pairwise comparisons, to compare CSF soluble triggering receptor expressed on myeloid cells-2 (sTREM2) across four participant groups: CSF+ with CSF- , CSF- with CSF+ , and concordant CSF/CSF.
Med Sci Sports Exerc
January 2025
School of Physical Education and Sports Science, South China Normal University, Guangzhou, CHINA.
Purpose: This study aimed to investigate the pathological responses of glial cells at different distances from amyloid plaques and the characteristics of oligodendrocyte precursor cells (OPCs) in perivascular clustering. Additionally, it sought to explore the impact of exercise training on AD pathology, specifically focusing on the modulation of glial responses and the effects of OPC perivascular clustering.
Methods: Three-month-old C57BL/6 and APP/PS1 mice were divided into four groups: wild-type sedentary, wild-type exercise, sedentary AD, and exercise AD groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!