In vitro transcription and start site selection in Schizosaccharomyces pombe.

J Mol Biol

Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California Los Angeles (UCLA), 90095, USA.

Published: June 2002

We have used the fission yeast Schizosaccharomyces pombe to establish both a biochemical and genetic system to study the roles of general transcription factors in transcription initiation. Extracts were prepared that faithfully transcribed S. pombe promoters and the results confirm that, in contrast to the budding yeast Saccharomyces cerevisiae, in vitro transcription in S. pombe initiates near to the TATA element. S. pombe transcription relies on upstream activation sequence elements and these can be replaced successfully with sites for binding Gal4-VP16 activators. Although it is mammalian-like in these respects, S. pombe initiation uses an unusual scanning mechanism. This directs initiation, preferentially using purines, within a narrow window approximately 25-40 base-pairs downstream from the edge of the TATA element. Genetic experiments showed that this scanning mechanism was associated with the properties of the TFIIB polypeptide. When human TFIIB was expressed in S. pombe, it was accepted by the endogenous transcription machinery and caused initiation to be restricted to the closer edge of this window, corresponding to the distance in humans. Preliminary experiments suggested that S. cerevisiae TFIIB was not accepted. The results enlarge the potential for using fission yeast to study the properties of general transcription factors such as TFIIB in choosing the sites at which transcription initiates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0022-2836(02)00329-7DOI Listing

Publication Analysis

Top Keywords

vitro transcription
8
schizosaccharomyces pombe
8
fission yeast
8
general transcription
8
transcription factors
8
tata element
8
scanning mechanism
8
pombe
7
transcription
7
transcription start
4

Similar Publications

Introduction: Ulcerative colitis (UC) is a chronic inflammatory disease. Patients with UC typically exhibit disruption of the Treg/Th17 immune axis, but its exact mechanism is still unclear.

Methods: This study first analyzed RNA- seq data from public databases of humans and mice, and cytology experiments were conducted to induce or inhibit the expression of SIRT1.

View Article and Find Full Text PDF

Expression and role of CTHRC1 in inflammatory bowel disease in children.

Cytotechnology

April 2025

Child Rehabilitation Department, Hubei NO.3 People's Hospital of Jianghan University, No. 26 Zhongshan Avenue, Qiaokou District, Wuhan, 430033 China.

Unlabelled: Inflammatory bowel disease (IBD) is a chronic, progressive, immune-mediated, gastrointestinal inflammatory disease with increasing occurrences in children. Collagen triple helix repeat containing 1 (CTHRC1), a migration-promoting protein, acts as a tumor-promoting factor in malignant tumors. However, functions and mechanisms of CTHRC1 in children with IBD remain unclear.

View Article and Find Full Text PDF

Background: The development and approval of novel drugs are typically time-intensive and expensive. Leveraging a computational drug repurposing framework that integrates disease-relevant genetically regulated gene expression (GReX) and large longitudinal electronic medical record (EMR) databases can expedite the repositioning of existing medications. However, validating computational predictions of the drug repurposing framework remains a challenge.

View Article and Find Full Text PDF

Background: Human mesenchymal stromal cells (MSCs) possess regenerative potential due to pluripotency and paracrine functions. However, their stemness and immunomodulatory capabilities are sub-optimal in conventional two-dimensional (2D) culture.

Aim: To enhance the efficiency and therapeutic efficacy of MSCs, an -like 3D culture condition was applied.

View Article and Find Full Text PDF

Background: Uterine injury can cause uterine scarring, leading to a series of complications that threaten women's health. Uterine healing is a complex process, and there are currently no effective treatments. Although our previous studies have shown that bone marrow mesenchymal stem cells (BMSCs) promote uterine damage repair, the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!