Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The working principle of an optical isolator made of two corrugated dielectric gratings is introduced. One grating acts as a polarizer, and the other acts as a quarter-wave plate used in conical incidence converting linearly polarized light into circularly polarized light. Global maxima of diffraction efficiency for surface-corrugated gratings with binary, sinusoidal, and pyramidal ridge shapes with dependence on the material index are identified. Regarding technological feasibility for use in the visible wavelength range, high-frequency gratings with a binary shape were realized. With these gratings, an extinction ratio of more than 40 dB for the polarizer is theoretically possible, and more than 20 dB was experimentally achieved. A good correlation between theoretically calculated efficiencies and birefringences based on rigorous methods and the experimental results is demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.41.003558 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!