Background/aims: We investigated whether the degree of hypothermia determines the impairment in cardiac muscle function upon rewarming and whether the sarcoplasmic reticulum Ca2+ release channel, RyR(2), contributes to hypothermia-induced changes in myoplasmic [Ca2+].

Methods: Tension measurements using rat papillary muscle and calcium transients (Fluorescent Ca2+ indicator Fura 2-AM) in rat ventricular myocytes were compared during deep (10 degrees C-16 degrees C) and moderate hypothermic (28 degrees C) myocardial temperatures. In a second experiment, myocytes were pretreated with dantrolene, an RyR(2) antagonist; calcium transients were determined at control temperatures (32 degrees C), 16 degrees C, and upon rewarming (32 degrees C).

Results: Papillary muscle contractility and myocyte calcium transients were significantly reduced during and after rewarming from 16 degrees C. At 28 degrees C, papillary muscle isometric tension was potentiated and calcium transients were unaffected. After rewarming from 28 degrees C, excitation-contraction coupling was maintained as isometric tension returned to 90% of control values. After rewarming from 16 degrees C, myocytes pretreated with dantrolene had return of calcium transients to 89% of control values while myocytes not treated with dantrolene recovered to only 50% of their control values.

Conclusion: We conclude that deep hypothermia, as opposed to moderate hypothermia of the myocardium, disrupts excitation-contraction coupling at cellular and tissue levels. Our finding of preserved calcium transients in dantrolene-pretreated myocytes exposed to deep hypothermia suggests a potential role for the RyR(2) channel in post-hypothermia reductions in cardiac function.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000063786DOI Listing

Publication Analysis

Top Keywords

calcium transients
24
rewarming degrees
16
deep hypothermia
12
papillary muscle
12
degrees
10
rat ventricular
8
ventricular myocytes
8
myocytes pretreated
8
pretreated dantrolene
8
degrees degrees
8

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.

Background: Mitochondrial reactive oxygen species (mROS), such as superoxide and hydrogen peroxide (HO), are implicated in aging-associated neurological disorders, including Alzheimer's Disease and frontotemporal dementia. Mitochondrial complex III of the respiratory chain has the highest capacity for mROS production and generates mROS toward the cytosol, poising it to regulate intracellular signaling and disease mechanisms. However, the exact triggers of complex III-derived ROS (CIII-ROS), its downstream molecular targets, and its functional roles in dementia-related pathogenesis remain unclear.

View Article and Find Full Text PDF

The development of a cytosolic delivery strategy for biopharmaceuticals is one of the central issues in drug development. Knowledge of the mechanisms underlying these processes may also pave the way for the discovery of novel delivery systems. L17E is a an attenuated cationic amphiphilic lytic (ACAL) peptide developed by our research group that shows promise for cytosolic antibody delivery.

View Article and Find Full Text PDF

Lysophosphatidylethanolamine (LPE) is a bioactive lipid mediator involved in diverse cellular functions. In this study, we investigated the effects of three LPE species, 1-palmitoyl LPE (16:0 LPE), 1-stearoyl LPE (18:0 LPE), and 1-oleoyl LPE (18:1 LPE) on pre-osteoblast MC3T3-E1 cells. All LPE species stimulated cell proliferation and activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 1/2.

View Article and Find Full Text PDF

Optimization and Calibration of 384-well Kinetic Ca Mobilization Assays for the Human Transient Receptor Potential Cation Channels TRPM8, TRPV1, and TRPA1.

SLAS Discov

December 2024

Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA 15232, USA. Electronic address:

Development, optimization, and calibration of human transient receptor potential (TRP) channel Ca mobilization assays for TRPM8, TRPV1, and TRPA1 are described. Heterologous expression of hTRPM8 in HEK293T cells was required for anti-TRPM8 antibody staining and TRPM8 agonist induced Ca mobilization signals which were both used to optimize transfection efficiency. FLIPR Calcium 6 dye concentration, loading time, and TRPM8 transfected cell seeding density were optimized and a DMSO tolerance of ≤0.

View Article and Find Full Text PDF

Endothelial dysfunction, characterized by a decline in endothelial physiological functions, is a significant aspect of cardiovascular aging, contributing notably to arterial stiffness, atherosclerosis, and hypertension. Transient receptor potential channel V4 (TRPV4), a key member of Ca-permeable channels, plays a crucial role in maintaining vascular functions. However, the role and mechanisms of TRPV4 in aging-related endothelial dysfunction remain incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!