Penetration, adhesion, and fusion in mammalian sperm-egg interaction.

Science

Department of Cell Biology, School of Medicine, University of California-Davis, Davis, CA 95616, USA.

Published: June 2002

Fertilization is the sum of the cellular mechanisms that pass the genome from one generation to the next and initiate development of a new organism. A typical, ovulated mammalian egg is enclosed by two layers: an outer layer of approximately 5000 cumulus cells and an inner, thick extracellular matrix, the zona pellucida. To reach the egg plasma membrane, sperm must penetrate both layers in steps requiring sperm motility, sperm surface enzymes, and probably sperm-secreted enzymes. Sperm also bind transiently to the egg zona pellucida and the egg plasma membrane and then fuse. Signaling in the sperm is induced by sperm adhesion to the zona pellucida, and signaling in the egg by gamete fusion. The gamete molecules and molecular interactions with essential roles in these events are gradually being discovered.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1072029DOI Listing

Publication Analysis

Top Keywords

zona pellucida
12
egg plasma
8
plasma membrane
8
sperm
6
egg
5
penetration adhesion
4
adhesion fusion
4
fusion mammalian
4
mammalian sperm-egg
4
sperm-egg interaction
4

Similar Publications

Variation in litter size (LS) in sheep is linked to genetic factors, including the Zona pellucida-3 (ZP3) gene, which plays a role in ovine reproductive processes. This study examined the association between ZP3 gene variations and LS in Kari sheep. Two groups of 160 Kari ewes were analysed: one consistently producing singletons and another producing twins, with occasional triplets.

View Article and Find Full Text PDF

Unlocking a Decade of Research on Embryo-Derived Extracellular Vesicles: Discoveries Made and Paths Ahead.

Stem Cell Rev Rep

January 2025

Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium.

Over the past decade, research on embryo-derived extracellular vesicles (EVs) has unveiled their critical roles in embryonic development and intercellular communication. EVs secreted by embryos are nanoscale lipid bilayer vesicles that carry bioactive cargo, including proteins, lipids, RNAs, and DNAs, reflecting the physiological state of the source cells. These vesicles facilitate paracrine and autocrine signaling, influencing key processes such as cell differentiation, embryo viability, and endometrial receptivity.

View Article and Find Full Text PDF

Background And Aim: Mosaicism, which is characterized by the presence of wild-type and more than one mutant allele, poses a serious problem in zygotic gene modification through the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 system. Therefore, we used pig embryos to compare the gene editing efficiencies achieved by combining electroporation and lipofection using different aminopeptidase N (APN)-targeting guide RNA (gRNA) sequences.

Materials And Methods: Six gRNAs (gRNA1-6) with different target sequences were designed to target APN.

View Article and Find Full Text PDF

Misfolding of the cellular PrP (PrP) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrP induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrP-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!