Anaerobic degradation of protocatechuate (3,4-dihydroxybenzoate) by Thauera aromatica strain AR-1.

FEMS Microbiol Lett

Mikrobielle Okologie, Fakultät für Biologie, Universität Konstanz, P.O. Box M654, 78457 Konstanz, Germany.

Published: June 2002

The denitrifying bacterium Thauera aromatica strain AR-1 grows anaerobically with protocatechuate (3,4-dihydroxybenzoate (DHB)) as sole energy and carbon source. This bacterium harbors two distinct pathways for degradation of aromatic compounds, the benzoyl-coenzyme A (CoA) pathway for benzoate degradation and the hydroxyhydroquinone (HHQ) pathway for degradation of 3,5-DHB. In order to elucidate whether protocatechuate is degraded via the benzoyl-CoA or the HHQ pathway, induction experiments were carried out. Dense suspensions of cells grown on protocatechuate or benzoate readily degraded benzoate and protocatechuate but not 3,5-DHB. Dense suspensions of 3,5-DHB-grown cells degraded 3,4- and 3,5-DHB at similar rates, but benzoate was not degraded. 3,5-DHB hydroxylating activity was found only in cells grown with this substrate. HHQ dehydrogenase activity was found in extracts of cells grown with 3,5-DHB and at a low rate also in protocatechuate-grown cells, but not in extracts of cells grown with benzoate. Activities of protocatechuyl-CoA synthetase and protocatechuyl-CoA reductase leading to 3-hydroxybenzoyl-CoA were found in extracts of cells grown with protocatechuate. There was no repression of the HHQ pathway by the presence of protocatechuate, unlike by degradation of benzoate. We conclude that protocatechuate is not degraded via the HHQ pathway because there was no evidence of a hydroxylation reaction involved in this process. Instead, our results strongly suggest that protocatechuate is degraded via a pathway which connects to the benzoyl-CoA route of degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2002.tb11257.xDOI Listing

Publication Analysis

Top Keywords

cells grown
20
hhq pathway
16
protocatechuate degraded
12
extracts cells
12
protocatechuate
9
protocatechuate 34-dihydroxybenzoate
8
thauera aromatica
8
aromatica strain
8
strain ar-1
8
dense suspensions
8

Similar Publications

Establishing of human induced pluripotent stem cell line DMSCi002-A from the hematopoietic stem cells of a healthy male donor.

Stem Cell Res

January 2025

Advanced Therapy Medicinal Product Center, Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand. Electronic address:

Using the integration-free episomal vector containing the reprogramming components OCT3/4/shp53, Sox2/KLF4, L-MYC/LIN28, and EBNA-1, hematopoietic stem cells obtained from a healthy 33-year-old man were effectively reprogrammed and turned into induced pluripotent stem cells (iPSCs). The reprogrammed iPSCs were grown without the use of feeders. They exhibited a normal karyotype, displayed pluripotency markers, and differentiated into cells from the three germ layers.

View Article and Find Full Text PDF

Astroglia are integral to brain development and the emergence of neurodevelopmental disorders. However, studying the pathophysiology of human astroglia using brain organoid models has been hindered by inefficient astrogliogenesis. In this study, we introduce a robust method for generating astroglia-enriched organoids through BMP4 treatment during the neural differentiation phase of organoid development.

View Article and Find Full Text PDF

Nitrogen source type modulates heat stress response in coral symbiont ().

Appl Environ Microbiol

January 2025

Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA.

Ocean warming due to climate change endangers coral reefs, and regional nitrogen overloading exacerbates the vulnerability of reef-building corals as the dual stress disrupts coral-Symbiodiniaceae mutualism. Different forms of nitrogen may create different interactive effects with thermal stress, but the underlying mechanisms remain elusive. To address the gap, we measured and compared the physiological and transcriptional responses of the Symbiodiniaceae to heat stress (31°C) when supplied with different types of nitrogen (nitrate, ammonium, or urea).

View Article and Find Full Text PDF

Challenges of Biological Complexity in the Study of Nanotoxicology.

Chem Res Toxicol

January 2025

Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.

The scale of nanoparticle use in consumer goods has grown exponentially over several decades owing to the unique properties of materials in this size range. At the same time, well-defined end of life cycle disposal strategies have not been developed for most materials, meaning that we are approaching the potential for a new ecological disaster with the release of millions of metric tons of nanoparticles into the waste stream. The field of nanotoxicology has grown to meet the challenge of investigating the potential hazards of these materials and has already identified toxicity mechanisms that affect multiple tropes of life.

View Article and Find Full Text PDF

Background/objectives: DNA vaccines are rapidly produced and adaptable to different pathogens, but they face considerable challenges regarding stability and delivery to the cellular target. Thus, effective delivery methods are essential for the success of these vaccines. Here, we evaluated the efficacy of capsules derived from the cell wall of the yeast as a delivery system for DNA vaccines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!