Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glycogenosis type II (GSD II) is a lysosomal disorder affecting skeletal and cardiac muscle. In the infantile form of the disease, patients display cardiac impairment, which is fatal before 2 years of life. Patients with juvenile or adult forms can present diaphragm involvement leading to respiratory failure. The enzymatic defect in GSD II results from mutations in the acid alpha-glucosidase (GAA) gene, which encodes a 76 kDa protein involved in intralysosomal glycogen hydrolysis. We previously reported the use of an adenovirus vector expressing GAA (AdGAA) for the transduction of myoblasts and myotubes cultures from GSD II patients. Transduced cells secreted GAA in the medium, and GAA was internalized by receptor-mediated capture, allowing glycogen hydrolysis in untransduced cells. In this study, using a GSD II mouse model, we evaluated the feasibility of GSD II gene therapy using muscle as a secretary organ. Adenovirus vector encoding AdGAA was injected in the gastrocnemius of neonates. We detected a strong expression of GAA in the injected muscle, secretion into plasma, and uptake by peripheral skeletal muscle and the heart. Moreover, glycogen content was decreased in these tissues. Electron microscopy demonstrated the disappearance of destruction foci, normally present in untreated mice. We thus demonstrate for the first time that muscle can be considered as a safe and easily accessible organ for GSD II gene therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/11.14.1637 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!