Our previous work showed that there were marked declines in (125)I-alpha-conotoxin MII labeled nicotinic receptors in monkey basal ganglia after nigrostriatal damage, findings that suggest alpha3/alpha6 containing nicotinic receptors sites may be of relevance to Parkinson's disease. We now investigate whether there are differential changes in the distribution pattern of nicotinic receptor subtypes in the basal ganglia in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned animals compared to controls to better understand the changes occurring with nigrostriatal damage. To approach this we used (125)I-alpha-conotoxin MII, a marker for alpha3/alpha6 nicotinic receptors, and (125)I-epibatidine, a ligand that labels multiple nicotinic subtypes. The results demonstrate that there were medial to lateral gradients in nicotinic receptor distribution in control striatum, as well as ventromedial to dorsolateral gradients in the substantia nigra, which resembled those of the dopamine transporter in these same brain regions. Treatment with MPTP, a neurotoxin that selectively destroys dopaminergic nigrostriatal neurons, led to a relatively uniform decrease in nicotinic receptor sites in the striatum, but a differential effect in the substantia nigra with significantly greater declines in the ventrolateral portion. Competition analysis in the striatum showed that alpha-conotoxin MII sensitive sites were primarily affected after lesioning, whereas multiple nicotinic receptor populations were decreased in the substantia nigra. From these data we suggest that in the striatum alpha3/alpha6 nicotinic receptors are primarily localized on dopaminergic nerve terminals, while multiple nicotinic receptor subtypes are present on dopaminergic cell bodies in the substantia nigra. Thus, if activation of striatal nicotinic receptors is key in the regulation of basal ganglia function, alpha3/alpha6-directed nicotinic receptor ligands may be more relevant for Parkinson's disease therapy. However, nicotinic receptor ligands with a broader specificity may be more important if receptors in the substantia nigra play a dominant role in controlling nigrostriatal activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0306-4522(02)00106-9 | DOI Listing |
Acta Naturae
January 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russian Federation.
The secreted human protein SLURP-2 is a regulator of epithelial homeostasis, which enhances the viability and migration of keratinocytes. The targets of SLURP-2 in keratinocytes are nicotinic and muscarinic acetylcholine receptors. This work is devoted to the search for the SLURP-2 functional regions responsible for enhancing keratinocyte viability and migration.
View Article and Find Full Text PDFExpert Opin Drug Discov
January 2025
Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala - CINVESTAV Tlaxcala, Tlaxcala, México.
Introduction: Existing pharmacotherapies for schizophrenia have not progressed beyond targeting dopamine and serotonin neurotransmission. Rodent models of schizophrenia are a necessary tool for elucidating neuropathological processes and testing potential pharmacotherapies, but positive preclinical results in rodent models often do not translate to positive results in the clinic.
Areas Covered: The authors reviewed PubMed for studies that applied rodent behavioral models of schizophrenia to assess the antipsychotic potential of several novel pharmacotherapies currently under investigation.
Bio Protoc
January 2025
School of Systems Biology, George Mason University, Fairfax, VA, USA.
Nicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated ion channels expressed in nervous and non-nervous system tissue important for memory, movement, and sensory processes. The pharmacological targeting of nAChRs, using small molecules or peptides, is a promising approach for the development of compounds for the treatment of various human diseases including inflammatory and neurogenerative disorders such as Alzheimer's disease. Using the acetylcholine binding protein (Ac-AChBP) as an established structural surrogate for human homopentameric α7 nAChRs, we describe an innovative protein painting mass spectrometry (MS) method that can be used to identify interaction sites for various ligands at the extracellular nAChR site.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
The specific pathogeneses of schizophrenia (SCZ) remain an enigma despite extensive research that has implicated both genetic and environmental factors. Recent revelations that dysregulated immune system caused by glial cell overactivation result in neuroinflammation, a key player in neurodegenerative as well as neuropsychiatric disorders including SCZ are providing novel clues on potential therapeutic interventions. Here, we review the roles of glial cells (Dr.
View Article and Find Full Text PDFNeurochem Res
January 2025
Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!