In view of the increasing threat posed by fungal infections in immunocompromised patients and due to the non-availability of effective treatments, it has become imperative to find novel antifungals and vigorously search for new drug targets. Fungal pathogens acquire resistance to drugs (antifungals), a well-established phenomenon termed multidrug resistance (MDR), which hampers effective treatment strategies. The MDR phenomenon is spread throughout the evolutionary scale. Accordingly, a host of responsible genes have been identified in the genetically tractable budding yeast Saccharomyces cerevisiae, as well as in a pathogenic yeast Candida albicans. Studies so far suggest that, while antifungal resistance is the culmination of multiple factors, there may be a unifying mechanism of drug resistance in these pathogens. ABC (ATP binding cassette) and MFS (major facilitator superfamily) drug transporters belonging to two different superfamilies, are the most prominent contributors to MDR in yeasts. Considering the abundance of the drug transporters and their wider specificity, it is believed that these drug transporters may not exclusively export drugs in fungi. It has become apparent that the drug transporters of the ABC superfamily of S. cerevisiae and C. albicans are multifunctional proteins, which mediate important physiological functions. This review summarizes current research on the molecular mechanisms underlying drug resistance, the emerging regulatory circuits of MDR genes, and the physiological relevance of drug transporters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0065-2911(02)46004-3 | DOI Listing |
FASEB J
January 2025
Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China.
Gestational Diabetes Mellitus (GDM) is the most frequent complication during pregnancy. Pharmacological interventions, such as peptide drugs that focused on improving the insulin sensitivity might be promising in the prevention and treatment of GDM. In this study, we aimed to investigate the role and mechanism of a novel peptide, named AGDMP1 (Anti-GDM peptide 1), which we previously identified lower in the serum of GDM patients using mass spectrometry, on the adipose insulin resistance in GDM.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
Salt stress disturbs plant growth and photosynthesis due to its toxicity. The ice plant Mesembryanthemum crystallinum is a highly salt-tolerant facultative crassulacean acid metabolism (CAM) plant. However, the genetic basis of the salt tolerance mechanisms in ice plants remains unclear.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India.
Diabetic cardiomyopathy (DCM) represents a significant health burden, exacerbated by the global increase in type 2 diabetes mellitus (T2DM). This condition contributes substantially to the morbidity and mortality associated with diabetes, primarily through myocardial dysfunction independent of coronary artery disease. Current treatment strategies focus on managing symptoms rather than targeting the underlying pathophysiological mechanisms, highlighting a critical need for specific therapeutic interventions.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
Hypoxia is a significant stressor, and stabilized hypoxia-inducible factor-1α (HIF-1α) regulates the expression of numerous genes, leading to various biochemical, molecular, physiological and genomic changes. The body's oxygen-sensing system activates gene expression to protect brain tissues from hypoxia. Gamma-aminobutyric acid, an inhibitory neurotransmitter, regulates brain excitability during hypoxia through the activation of HIF-1 α.
View Article and Find Full Text PDFIntroduction: With the increasing use of aeromedical transport for critically ill patients, it is essential to understand the impact of pressure changes on drug infusion delivery systems. As airplanes ascend and descend, gases/bubbles are released from solutions when ambient pressure decreases and dissolves when pressure increases. This may affect mechanical fluid delivery systems and cause clinically significant changes, especially within a critical care setting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!