Steroid hormones may be relevant for the fungus-host relation in dermatophytoses. In contrast to most other hosts of dermatophytes, humans are characterized by a high cutaneous concentration of the adrenal androgen dehydroepiandrosterone (DHEA) and its sulphate (DHEAS). To investigate whether the strictly anthropophilic dermatophyte Epidermophyton floccosum can metabolize this steroid hormone, cultures of E. floccosum were supplemented with DHEA. After 5 days of incubation the steroids in the culture supernatants were extracted and differentiated by gaschromatography and massspectrometry (GC-MS). The results show that a nearly complete metabolization of DHEA by E. floccosum leads to the formation of multiple new steroids/metabolites some of which have not been reported before. Therefore, this fungus could possibly mediate the hormone regulated cutaneous defense mechanisms of the host by an intraepidermal metabolization of DHEA.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1439-0507.2002.tb04544.xDOI Listing

Publication Analysis

Top Keywords

metabolization dhea
8
[dehydroepiandrosterone metabolism
4
metabolism epidermophyton
4
epidermophyton floccosum]
4
floccosum] steroid
4
steroid hormones
4
hormones relevant
4
relevant fungus-host
4
fungus-host relation
4
relation dermatophytoses
4

Similar Publications

Structure and hormonal output of the adrenal gland after experimental estrogenization of male rats.

Histol Histopathol

January 2025

Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Orchidectomy and estrogenization of the male represent a procedure that is applicable in sex reassignment or in prostate cancer therapy. This approach has an influence on the hypothalamic-pituitary-adrenal axis and thus affects cardiovascular function and metabolism. We utilized orchidectomized rats to evaluate the effects of estradiol on the structure and hormonal output of the adrenal gland.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility among women of reproductive age, yet the range of effective treatment options remains limited. Our previous study revealed that reduced levels of nicotinamide adenine dinucleotide (NAD) in ovarian granulosa cells (GCs) of women with PCOS resulted in the accumulation of reactive oxygen species (ROS) and mitochondrial dysfunction. However, it is still uncertain whether increasing NAD levels in the ovaries could improve ovarian function in PCOS.

View Article and Find Full Text PDF

Objective: To systematically evaluate the effectiveness of non-pharmacological interventions (NPIs), including electroacupuncture, exercise, diet, and lifestyle changes, in reducing androgen levels in women with polycystic ovary syndrome (PCOS) through a systematic review and network meta-analysis.

Methods: Comprehensive searches were conducted in PubMed, Embase, Cochrane Library, Web of Science, CNKI, and Wanfang up to June 2024. Randomized controlled trials (RCTs) comparing NPIs with other NPIs or placebo treatments in adult women with PCOS were included.

View Article and Find Full Text PDF

This study aimed to assess the causal relationship between lipidome and female reproductive diseases (FRDs) using an advanced series of Mendelian randomization (MR) methods. This study utilized genome-wide association study (GWAS) summary statistics encompassing 179 lipidomes and six prevalent FRDs, namely polycystic ovary syndrome (PCOS), endometriosis, uterine fibroid, female infertility, uterine endometrial cancer, and ovarian cancer. The two-sample MR (TSMR) approach was employed to investigate the causal relationships, with further validation using false discovery rate (FDR) and multivariable MR (MVMR) methods.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is a complex disorder that significantly impacts female reproductive health and increases the risk of metabolic and reproductive diseases. Emerging evidence suggests that alterations in gut microbiota and their metabolic activities contribute to PCOS pathogenesis, although the underlying mechanisms remain elusive. In the current study, we found that patients with PCOS had altered metabolic profiles, particularly characterized by reduced levels of indole-3-propionic acid (IPA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!