A new type of dihydroorotate dehydrogenase, type 1S, from the thermoacidophilic archaeon Sulfolobus solfataricus.

Extremophiles

Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83 H, 1307 Copenhagen K, Denmark.

Published: June 2002

Dihydroorotate dehydrogenase (DHOD) (EC 1.3.3.1) from the thermoacidophilic archaeon Sulfolobus solfataricus P2 (DSM 1617) was partially purified 3,158-fold, characterized, and the encoding genes identified. Based on enzymological as well as phylogenetic methods, dihydroorotate dehydrogenase from S. solfataricus (DHODS) represents a new type of DHOD, type 1S. Furthermore, it is unable to use any of the (type-specific) natural electron acceptors employed by all other presently known DHODs. DHODS shows optimal activity at 70 degrees C in the pH range 7-8.5. It is capable of using ferricyanide, 2,6-dichlorophenolindophenol (DCIP), Q(0), and molecular oxygen as electron acceptor. Kinetic studies employing ferricyanide indicate a two-site ping-pong mechanism with K(M) values of 44.2+/-1.9 microM for the substrate dihydroorotate and 344+/-21 microM for the electron acceptor ferricyanide, as well as competitive product inhibition with a K(i) of 23.7+/-3.4 microM for the product orotate (OA). The specific activity, as determined from a partially purified sample, is approximately 20 micromol mg(-1) min(-1). DHODS is a heteromeric enzyme comprising a catalytic subunit encoded by pyrD (291 aa; MW=31.1 kDa) and an electron acceptor subunit (208 aa; MW=23.6 kDa), encoded by orf1. DHODS employs a serine as catalytic base, which is unique for a cytosolic DHOD. To our knowledge, this work represents not only the first study on an archaeal DHOD but the first on a nonmesophilic DHOD as well.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00792-001-0249-0DOI Listing

Publication Analysis

Top Keywords

dihydroorotate dehydrogenase
12
electron acceptor
12
thermoacidophilic archaeon
8
archaeon sulfolobus
8
sulfolobus solfataricus
8
partially purified
8
dhod
5
dhods
5
type
4
type dihydroorotate
4

Similar Publications

Correction: Vidofludimus inhibits porcine reproductive and respiratory syndrome virus infection by targeting dihydroorotate dehydrogenase.

Vet Res

December 2024

Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.

View Article and Find Full Text PDF

Exploring the Venom Gland Transcriptome of and : De Novo Assembly and Analysis of Novel Toxic Proteins.

Toxins (Basel)

November 2024

Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador.

Previous proteomic studies of viperid venom revealed that it is mainly composed of metalloproteinases (SVMPs), serine proteinases (SVSPs), phospholipase A2 (PLA2), and C-type lectins (CTLs). However, other proteins appear in minor amounts that affect prey and need to be identified. This study aimed to identify novel toxic proteins in the venom gland transcriptome of and , using data from NCBI.

View Article and Find Full Text PDF

Malaria remains a serious global health challenge, yet treatment and control programs are threatened by drug resistance. Dihydroorotate dehydrogenase (DHODH) was clinically validated as a target for treatment and prevention of malaria through human studies with DSM265, but currently no drugs against this target are in clinical use. We used structure-based computational tools including free energy perturbation (FEP+) to discover highly ligand efficient, potent, and selective pyrazole-based DHODH inhibitors through a scaffold hop from a pyrrole-based series.

View Article and Find Full Text PDF

FTO, an -methyladenosine (mA) and ,2'--dimethyladenosine (mA) RNA demethylase, is a promising target for treating acute myeloid leukemia (AML) due to the significant anticancer activity of its inhibitors in preclinical models. Here, we demonstrate that the FTO inhibitor FB23-2 suppresses proliferation across both AML and CML cell lines, irrespective of FTO dependency, indicating an alternative mechanism of action. Metabolomic analysis revealed that FB23-2 induces the accumulation of dihydroorotate (DHO), a key intermediate in pyrimidine nucleotide synthesis catalyzed by human dihydroorotate dehydrogenase (DHODH).

View Article and Find Full Text PDF

In this study, homoisoflavone methylophiopogonanone A (MOA) was investigated for its inhibitory effect on ferroptosis of H9c2 cells using a set of cellular assays, such as BODIPY-probed and HDCFDA-probed flow cytometry analyses, cell counting kit-8 analysis (CCK-8), and lactate dehydrogenase (LDH) release analysis. All these cellular assays adopted Fer-1 as the positive control. Subsequently, MOA and Fer-1 were subjected to two antioxidant assays, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!