A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An active site homology model of phenylalanine ammonia-lyase from Petroselinum crispum. | LitMetric

AI Article Synopsis

  • The enzyme phenylalanine ammonia-lyase (PAL) shares similarities with histidine ammonia-lyase (HAL), which has a known structure, prompting researchers to analyze key amino acids for their roles in PAL's function through mutations.
  • Mutations in specific residues (like S203, R354, and Y351) significantly decreased the enzyme's activity, with some mutants losing up to 75,000 times the activity of the original enzyme.
  • A homology model based on HAL's structure helped researchers infer the functional importance of these mutated residues in PAL's catalytic process.

Article Abstract

The plant enzyme phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) shows homology to histidine ammonia-lyase (HAL) whose structure has been solved by X-ray crystallography. Based on amino-acid sequence alignment of the two enzymes, mutagenesis was performed on amino-acid residues that were identical or similar to the active site residues in HAL to gain insight into the importance of this residues in PAL for substrate binding or catalysis. We mutated the following amino-acid residues: S203, R354, Y110, Y351, N260, Q348, F400, Q488 and L138. Determination of the kinetic constants of the overexpressed and purified enzymes revealed that mutagenesis led in each case to diminished activity. Mutants S203A, R354A and Y351F showed a decrease in kcat by factors of 435, 130 and 235, respectively. Mutants F400A, Q488A and L138H showed a 345-, 615- and 14-fold lower kcat, respectively. The greatest loss of activity occurred in the PAL mutants N260A, Q348A and Y110F, which were 2700, 2370 and 75 000 times less active than wild-type PAL. To elucidate the possible function of the mutated amino-acid residues in PAL we built a homology model of PAL based on structural data of HAL and mutagenesis experiments with PAL. The homology model of PAL showed that the active site of PAL resembles the active site of HAL. This allowed us to propose possible roles for the corresponding residues in PAL catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1432-1033.2002.02984.xDOI Listing

Publication Analysis

Top Keywords

active site
16
homology model
12
amino-acid residues
12
residues pal
12
pal
10
phenylalanine ammonia-lyase
8
mutated amino-acid
8
model pal
8
residues
6
active
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!