Hybridization and enzymatic extension of au nanoparticle-bound oligonucleotides.

J Am Chem Soc

Department of Chemistry and Life Sciences Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Published: June 2002

We have investigated the impact of steric effects on the hybridization and enzymatic extension of oligonucleotides bound to 12-nm colloidal Au particles. In these experiments, a nanoparticle-bound 12-mer sequence is hybridized either to its solution phase 12-mer complement or to an 88-mer template sequence. The particle-bound oligonucleotide serves as a primer for enzymatic extension reactions, in which covalent incorporation of nucleotides to form the complement of the template is achieved by the action of DNA polymerase. Primers were attached via-C(6)H(12)SH, -C(12)H(24)SH, and -TTACAATC(6)H(12)SH linkers attached at the 5' end. Primer coverage on the nanoparticles was varied by dilution with (5')HSC(6)H(12)AAA AAA(3'). Hybridization efficiencies were determined as a function of linker length, primer coverage, complement length (12-mer vs 88-mer), and primer:complement concentration ratio. In all cases, hybridization for the 88-mer was less efficient than for the 12-mer. Low primer surface coverage, greater particle-primer separation, and higher primer:complement ratios led to optimal hybridization. Hybridization efficiencies as high as 98% and 75% were observed for the 12-mer and 88-mer, respectively. Enzymatic extension of particle-bound primers was observed under all conditions tested; however, the efficiency of the reaction was strongly affected by linker length and primer coverage. Extension of primers attached by the longest linker was as efficient as the solution-phase reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0177915DOI Listing

Publication Analysis

Top Keywords

enzymatic extension
16
primer coverage
12
hybridization enzymatic
8
primers attached
8
hybridization efficiencies
8
linker length
8
length primer
8
12-mer 88-mer
8
hybridization
6
extension
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!