Purpose: The objective of this study was to evaluate the mechanical properties and bond strength of glass-ionomer cements (GICs) and resin-modified GICs (RM-GICs) that are indicated as restorative materials for the Atraumatic Restorative Treatment (ART) technique.

Materials And Methods: Fifteen disk specimens for the diametral tensile strength (DTS) test and fifteen cylindrical specimens for the compressive strength (CS) test were made of each GIC: Ketac-Fil, Ketac-Molar (ESPE), Fuji IX and Fuji PLUS (GC). Forty human molars were sectioned and embedded in resin with either buccal or lingual surfaces exposed for the tensile bond strength (TBS) test. The surface was ground until a flattened area of enamel or dentin was obtained. After conditioning, inverted truncated cones of GICs were prepared on the flat tooth surfaces. The powder:liquid ratio of Fuji PLUS was adjusted for restorative purposes. Prior to testing, specimens were stored for 24 h (TBS test) and for 1 h, 24 h, and 7 days (CS and DTS tests) in deionized water at 37 degrees C. They were then loaded at a crosshead speed of 1.0 mm/min for CS and 0.5 mm/min for DTS and TBS tests until failure occurred. The data were submitted to two-way ANOVA at 0.05 level of significance, followed by a Tukey-Kramer test for multiple comparisons.

Results: The mean CS values ranged from 90.27 to 170.73 MPa and DTS means from 6.21 to 22.32, with test periods from 1 h to 7 days. The means for TBS ranged from 4.90 to 11.36 MPa and from 2.52 to 5.55 MPa in enamel and dentin, respectively. No differences were found between materials with the CS test except at 1 hour. The resin-modified GIC (RM-GIC) had the highest DTS, with no changes between the test periods, and the highest TBS for both enamel and dentin.

Conclusion: Among the GICs tested, RM-GIC showed higher values of DTS and TBS.

Download full-text PDF

Source

Publication Analysis

Top Keywords

bond strength
12
mechanical properties
8
properties bond
8
strength glass-ionomer
8
glass-ionomer cements
8
test
8
tbs test
8
enamel dentin
8
dts tbs
8
test periods
8

Similar Publications

Pnictogen Bond-Mediated Coassemblies for Noncovalent Molecular Glass.

Nano Lett

January 2025

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

Pnictogen bond (PnB) occurring on the group-15 elements is recognized as σ- or π-hole-based interaction that has garnered attention in the fields of anion recognition and organocatalysis. Due to the polyvalent feature of pnictogens and high directionality, PnB possesses potential in the design of convergent coassembled materials with acceptors containing lone pair electrons or anions, which however is rarely explored so far. Herein, we unveil the role of antimony (Sb)-based PnB donors in producing self-assembled chiroptical materials with lone pair electron containing acceptors.

View Article and Find Full Text PDF

Unprecedented carbonic anhydrase inhibition mechanism: Targeting histidine 64 side chain through a halogen bond.

Arch Pharm (Weinheim)

January 2025

Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Sesto Fiorentino, Firenze, Italy.

2,2'-Thio-bis(4,6-dichlorophenol), namely bithionol, is a small molecule endowed with a multifaceted bioactivity. Its peculiar polychlorinated phenolic structure makes it a suitable candidate to explore its potentialities in establishing interaction patterns with enzymes of MedChem interest, such as the human carbonic anhydrase (hCA) metalloenzymes. Herein, bithionol was tested on a panel of specific hCAs through the stopped-flow technique, showing a promising micromolar inhibitory activity for the hCA II isoform.

View Article and Find Full Text PDF

Elastic, strong and tough ionically conductive elastomers.

Nat Commun

January 2025

Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France.

Stretchable elastic materials with high strength, toughness, and good ionic conductivity are highly desirable for wearable devices and stretchable batteries. Unfortunately, limited success has been reported to attain all of these properties simultaneously. Here, we report a family of ionically conductive elastomers (ICEs) without compromise between mechanical properties (high stiffness, reversible elasticity, fracture resistance) and ionic conductivity, by introducing a multiple network elastomer (MNE) architecture into a low polymer.

View Article and Find Full Text PDF

Optimizing bond strength: Insights into resin-based restorative materials and calcium silicate cement interactions.

Eur J Oral Sci

January 2025

Department of Basic Sciences, Biomedical Stomatology Research Group, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, Colombia.

View Article and Find Full Text PDF

Under current minimally invasive treatment regimes, minor tooth preparation and thinner biomimetic ceramic restoration are used to preserve the restored tooth's vitality, aesthetics, and function. New computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic-like material are now available. To guarantee longevity, a dental clinician must know these newly launched product's mechanical strength compared to the relatively brittle glass-matrix ceramic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!