Tensile tests and biphasic finite element modeling were used to determine a set of transversely isotropic properties for the meniscus, including the hydraulic permeability coefficients and solid matrix properties. Stress-relaxation tests were conducted on planar samples of canine meniscus samples of different orientations, and the solid matrix properties were determined from equilibrium data. A 3-D linear biphasic and tranversely isotropic finite element model was developed to model the stress-relaxation behavior of the samples in tension, and optimization was used to determine the permeability coefficients, k1 and k2, governing fluid flow parallel and perpendicular to the collagen fibers, respectively. The collagen fibrillar orientation was observed to have an effect on the Young's moduli (E1=67.8 MPa, E2=11.1 MPa) and Poisson's ratios (v12=2.13, v21 =1.50, v23=1.02). However, a significant effect of anisotropy on permeability was not detected (k1 =0.09x10(-16) m4/Ns, k2=0.10x10(-16) m4/Ns). The low permeability values determined in this study provide insight into the extent of fluid pressurization in the meniscus and will impact modeling predictions of load support in the meniscus.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.1468868DOI Listing

Publication Analysis

Top Keywords

hydraulic permeability
8
finite element
8
permeability coefficients
8
solid matrix
8
matrix properties
8
permeability
5
meniscus
5
experimental biphasic
4
biphasic fem
4
fem determinations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!