Background: Various tissues from vertebrates and invertebrates respond to external signal molecules by rapid release of nitric oxide (NO) mediated by constitutive nitric oxide synthase.

Material/methods: Invertebrate immunocytes were collected from maintained stock and human granulocytes were isolated from leukocyte-enriched blood obtained from the Long Island Blood Services. The invertebrate ganglionic tissue was either extracted or exposed for ex vivo and in vivo evaluation. Nitric oxide release was measured using a newly developed NO-selective nanoprobe, exhibiting enhanced sensitivity.

Results: Evaluation of NO release from the pedal ganglia of the marine bivalve, Mytilus edulis, demonstrated in vitro release of NO that fluctuated from 969 to 1003 pM, with a mean change in NO of 35 pM/cycle and a mean cycle time of approximately 4 minutes. Basal release of NO/cycle from the ganglia in vivo was increased significantly to approximately 65 pM (P<0.05) with an increase in cycle time to approximately 7 minutes. Exposure of the ganglia to morphine in vivo resulted in a significant increase in NO release and a lack of NO pulsations. The fluctuation in NO release from immunocytes of Mytilus edulis was approximately 27 pM per cycle with a cycle time of 4 minutes whereas human granulocytes release fluctuated approximately 23 pM with a cycle time of 6 minutes.

Conclusions: These data demonstrate that basal release of NO from various tissues is released in a cyclic manner and the cycle time and magnitude is subject to regulation by external stimuli.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nitric oxide
20
oxide release
8
human granulocytes
8
release
6
oxide
5
cyclic nitric
4
release human
4
granulocytes invertebrate
4
invertebrate ganglia
4
ganglia immunocytes
4

Similar Publications

Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice.

Front Neurosci

December 2024

Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.

Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is one of the most common chronic endocrine diseases, characterized by hyperglycemia, due to abnormal nitric oxide synthesis. The trend of an increase in the number of patients with DM continues. The medical and economic burden of DM is not only associated with hyperglycemia management but also with the management of DM-related complications.

View Article and Find Full Text PDF

Analgesic Effect of Dehydrocorydaline on Chronic Constriction Injury-Induced Neuropathic Pain via Alleviating Neuroinflammation.

Chin J Integr Med

January 2025

Department of Anaesthesiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210008, China.

Objective: To illustrate the role of dehydrocorydaline (DHC) in chronic constriction injury (CCI)-induced neuropathic pain and the underlying mechanism.

Methods: C57BL/6J mice were randomly divided into 3 groups by using a random number table, including sham group (sham operation), CCI group [intrathecal injection of 10% dimethyl sulfoxide (DMSO)], and CCI+DHC group (intrathecal injection of DHC), 8 mice in each group. A CCI mouse model was conducted to induce neuropathic pain through ligating the right common sciatic nerve.

View Article and Find Full Text PDF

The study investigated the degradation of 3-methoxy-1-propanol (3M1P) by OH using the M06-2X/6-311++G(d, p) level, with CCSD(T) single-point corrections. We focused on hydrogen atom abstraction from various alkyl groups within the molecule. The rate coefficient for 3M1P degradation was calculated from the sum of the rate coefficients corresponding to the removal of H-atoms from primary (-CH), secondary (-CH-), tertiary (-CH< ), and alcohol (-ΟH) groups.

View Article and Find Full Text PDF

In polar and alpine regions, global warming and landform changes are draining lakes, transforming them into permafrost with altered microbial communities and element cycling. In this study, we investigated bacterial and archaeal (prokaryotic) community changes in the newly exposed sediment of Zonag Lake (Tibetan Plateau), focusing on prokaryotic diversity, community structure, and genes involved in carbon fixation and nitrogen cycling across lateral (up to 800 m) and vertical (up to 80 cm) horizons. The results showed that prokaryotic richness decreased across the lateral horizons, coinciding with reductions in carbon concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!