The role of active site residues in fructose 1,6-bisphosphate aldolase is investigated by chemical-modification rescue. An active-site mutation, K107C, is constructed in a background where the four solvent-accessible cysteine residues are converted to alanine. The resulting mutant, tetK107C, when reacted with bromoethylamine (BrEA), shows a 40-fold increase in activity (to 80% that of wild type). Determination of the sites and their degree of modification using electrospray ionization Fourier transform mass spectrometry (ESI-FTMS) is developed, allowing correlation of activity after chemical modification rescue to the degree of modification. The stoichiometry of the reaction is 2.5 aminoethylations per subunit, as measured by ESI-FTMS. Protein modification with a double-labeled mix (1:1) of natural abundance isotope (d(0)-BrEA) and 2-bromoethyl-1,1,2,2-d4-amine hydrobromide (d(4)-BrEA), followed by dialysis and trypsin digestion, shows aminoethylated peptides as "twin peptides" separated by four mass units in ESI-FTMS analysis. Using this detection procedure under nondenaturing (native) conditions, C107 is aminoethylated, whereas the four buried thiols remain unlabeled. Aminoethylation of other residues is observed, and correlates with those peptides containing histidine, methionine, and/or the amino terminus. Quantification of the aminoethylation reaction is achieved by labeling with nondeuterated d(0)-BrEA under denaturing conditions following double labeling under native conditions. In addition to complete labeling all five thiols, the intensity of the d(0)-BrEA peak for C107 containing peptides increases, and the change in the d(0)/d(4) ratio between native and denaturing conditions shows 82 +/- 4.5% aminoethylation at C107. This correlation of modification with the recovered activity, indicates that gamma-thia-lysine replaces lysine in the catalytic mechanism. Kinetic constants measured for the rescued K107C mutant enzyme with the substrates fructose 1-phosphate and fructose 1,6-bisphosphate are consistent with the role of the positively charged lysine binding to the C6-phosphate. ESI-FTMS, combined with this double-labeling procedure, allows precise identification of sites and measurement of degree of protein modification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373652 | PMC |
http://dx.doi.org/10.1110/ps.3900102 | DOI Listing |
Eur J Med Chem
November 2024
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China. Electronic address:
Ferroptosis is a unique type of non-apoptotic form of cell death characterized by increased lipid hydroperoxide levels. It has relevance for a number of pathological conditions including multiple organ injuries and degenerative diseases. GPX4 plays an important role in ferroptosis by repairing lipid hydroperoxides.
View Article and Find Full Text PDFJ Biol Chem
April 2024
Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. Electronic address:
RNA 5-methylcytosine (m5C) is an abundant chemical modification in mammalian RNAs and plays crucial roles in regulating vital physiological and pathological processes, especially in cancer. However, the dysregulation of m5C and its underlying mechanisms in non-small cell lung cancer (NSCLC) remain unclear. Here we identified that NSUN2, a key RNA m5C methyltransferase, is highly expressed in NSCLC tumor tissue.
View Article and Find Full Text PDFJ Hepatol
June 2024
National Taiwan University College of Medicine, Taipei, Taiwan. Electronic address:
Background & Aims: HBV expresses more than 10 spliced RNAs from the viral pregenomic RNA, but their functions remain elusive and controversial. To address the function of HBV spliced RNAs, we generated splicing-deficient HBV mutants and conducted experiments to assess the impact of these mutants on HBV infection.
Methods: HepG2-NTCP cells, human hepatocyte chimeric FRG mice (hu-FRG mice), and serum from patients with chronic hepatitis B were used for experiments on HBV infection.
Biochemistry
April 2022
Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States.
Chemical modification of cytidine in noncoding RNAs plays a key role in regulating translation and disease. However, the distribution and dynamics of many of these modifications remain unknown due to a lack of sensitive site-specific sequencing technologies. Here, we report a protonation-dependent sequencing reaction for the detection of 5-formylcytidine (5fC) and 5-carboxycytidine (5caC) in RNA.
View Article and Find Full Text PDFJ Mater Chem B
December 2021
CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
Uncontrolled hemorrhage is the leading cause of trauma death. The development of safe and efficient hemostatic agents that can rapidly and effectively control bleeding is of great significance to rescue the injured. However, the mechanical, absorptive, and antibacterial properties of conventional two-dimensional hemostatic agents are not satisfactory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!