Binding site on human von Willebrand factor of bitiscetin, a snake venom-derived platelet aggregation inducer.

Biochemistry

Division of Biomedical Polymer Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.

Published: June 2002

Bitiscetin, a C-type lectin-like heterodimeric snake venom protein purified from Bitis arietans, binds to human von Willebrand factor (VWF) and induces the platelet membrane glycoprotein (GP) Ib-dependent platelet agglutination in vitro similar to botrocetin. In contrast with botrocetin which binds to the A1 domain of VWF, the A3 domain, a major collagen-binding site of VWF, was proposed to be a bitiscetin-binding site. In the competitive binding assay, neither bitiscetin nor botrocetin had an inhibitory effect on the VWF binding to the immobilized type III collagen on a plastic plate. The anti-VWF monoclonal antibody NMC-4, which inhibits VWF-induced platelet aggregation by binding to alpha4 helix of the A1 domain, also inhibited bitiscetin binding to the VWF. Binding of VWF to the immobilized bitiscetin was competitively inhibited by a high concentration of botrocetin. A panel of recombinant VWF, in which alanine-scanning mutagenesis was introduced to the charged amino acid residues in the A1 domain, showed that the bitiscetin-binding activity was reduced in mutations at Arg632, Lys660, Glu666, and Lys673 of the A1 domain. Those substituted at Arg629, Arg636, and Lys667, which decreased the botrocetin binding, showed no effect on the bitiscetin binding. These results indicate that bitiscetin binds to a distinct site in the A1 domain of VWF spanning over alpha4a, alpha5 helices and the loop between alpha5 and beta6 but close to the botrocetin- and NMC-4-binding sites. Monoclonal antibodies recognizing the alpha-subunit of bitiscetin specifically inhibited bitiscetin-induced platelet agglutination without affecting the binding between VWF and bitiscetin, suggesting that the alpha-subunit of bitiscetin is located on VWF closer to the GPIb-binding site than the beta-subunit is. Bitiscetin and botrocetin might modulate VWF by binding to the homologous region of the A1 domain to induce a conformational change leading to an increased accessibility to platelet GPIb.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi020004bDOI Listing

Publication Analysis

Top Keywords

vwf binding
12
binding vwf
12
bitiscetin
11
vwf
11
binding
10
human von
8
von willebrand
8
willebrand factor
8
platelet aggregation
8
platelet agglutination
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!