Somatostatin receptor subtype 2 gene therapy inhibits pancreatic cancer in vitro.

J Surg Res

Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA.

Published: June 2002

Background: Most human pancreatic adenocarcinoma cells do not express somatostatin receptors and somatostatin does not inhibit the growth of these cancers. We have demonstrated previously that somatostatin inhibits the growth of pancreatic cancers expressing somatostatin receptor subtype 2 (SSR2) but not receptor-negative cancers. SSR2 expression may be an important tumor suppressor pathway that is lost in human pancreatic cancer. We hypothesized that SSR2 gene transfer would restore the growth inhibitory response of human pancreatic cancer to somatostatin.

Methods: We created adenoviral constructs containing the SSR2 or Lac-Z gene and transfected somatostatin receptor-negative human pancreatic cancer cells (Panc-1). Presence of functional cell surface SSR2 protein was assessed by whole-cell competitive binding assays. Parental cells, Lac-Z-transfected, and SSR2-transfected cells were cultured in the presence and absence of somatostatin. The rate of cell growth was determined by direct cell counting using a hemacytometer (n = 8 wells/group). Cells were analyzed for expression of tumor suppressor proteins by Western blot.

Results: Panc-1 cells transfected with the SSR2 transgene demonstrated high-affinity specific binding of (125)I-somatostatin at physiologic concentrations. Expression of somatostatin receptors caused 60% inhibition of cell growth compared with the Lac-Z virus-treated controls (P < 0.05 by Kruskal-Wallis/Bonferroni). There was no additional inhibition of cell proliferation with exogenous somatostatin. Furthermore, addition of somatostatin ligand antibody did not diminish the effect of SSR2 expression on cell proliferation. Western blot analysis revealed an upregulation of the cyclin-dependent kinase inhibitor p27 in the SSR2-transfected cells.

Conclusions: Expression of SSR2 by human pancreatic cancer causes significant slowing of cell division by a mechanism independent of somatostatin. The mechanism may involve upregulation of known tumor suppressor proteins. Restoration of SSR2 gene expression deserves further study as a potential gene therapy strategy in human pancreatic cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jsre.2002.6450DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
24
human pancreatic
24
tumor suppressor
12
somatostatin
11
ssr2
9
somatostatin receptor
8
receptor subtype
8
gene therapy
8
pancreatic
8
somatostatin receptors
8

Similar Publications

Progress report on multiple endocrine neoplasia type 1.

Fam Cancer

January 2025

Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Multiple endocrine neoplasia type 1 (MEN1) syndrome is an autosomal dominant disorder caused by a germline pathogenic variant in the MEN1 tumor suppressor gene. Patients with MEN1 have a high risk for primary hyperparathyroidism (PHPT) with a penetrance of nearly 100%, pituitary adenomas (PitAd) in 40% of patients, and neuroendocrine neoplasms (NEN) of the pancreas (40% of patients), duodenum, lung, and thymus. Increased MEN1-related mortality is mainly related to duodenal-pancreatic and thymic NEN.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma during pregnancy is extremely rare. Overall, including our case, only 19 cases confirmed antepartum have been reported to date. We report the case of a 37 year-old woman at 24 weeks of pregnancy in whom a pancreatic adenocarcinoma was identified during investigation of a suspected acute pancreatitis.

View Article and Find Full Text PDF

Pancreatic stellate cell: Update on molecular investigations and clinical translation in pancreatic cancer.

Int J Cancer

January 2025

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China.

Pancreatic cancer is a particularly aggressive tumor, distinguished by the presence of a prominent collagenous stroma and desmoplasia that envelops the tumor cells. Pancreatic stellate cell (PSC) contributes to the formation of a dense fibrotic stroma and has been demonstrated to facilitate tumor progression. As the significance of PSCs is increasingly revealed, more explorations are focused on the complex molecular mechanisms and tumor-stromal crosstalk in order to guide potential therapeutic approaches through deactivating or reprogramming PSCs.

View Article and Find Full Text PDF

Quiescent pancreatic stellate cells (PSCs) represent only a very low proportion of the pancreatic tissue, but their activation leads to stroma remodeling and fibrosis associated with pathologies such as chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). PSC activation can be induced by various stresses, including acidosis, growth factors (PDGF, TGFβ), hypoxia, high pressure, or intercellular communication with pancreatic cancer cells. Activated PSC targeting represents a promising therapeutic strategy, but little is known regarding the molecular mechanisms underlying the activation of PSCs.

View Article and Find Full Text PDF

Gallbladder cancer is the most prevalent malignancy of the biliary tract and has a dismal overall survival even in the present day. The development of new drugs holds promise for improving the prognosis of this lethal disease. The possible anti-neoplastic role of morusin was investigated both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!