Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Leaderless mRNAs beginning with the AUG initiating codon occur in all kingdoms of life. It has been previously reported that translation of the leaderless cI mRNA is stimulated in an Escherichia coli rpsB mutant deficient in ribosomal protein S2. Here, we have studied this phenomenon at the molecular level by making use of an E. coli rpsB(ts) mutant. The analysis of the ribosomes isolated under the non-permissive conditions revealed that in addition to ribosomal protein S2, ribosomal protein S1 was absent, demonstrating that S2 is essential for binding of S1 to the 30S ribosomal subunit. In vitro translation assays and the selective translation of a leaderless mRNA in vivo at the non-permissive temperature corroborate and extend previous in vitro ribosome binding studies in that S1 is indeed dispensable for translation of leaderless mRNAs. The deaD/csdA gene, encoding the "DeaD/CsdA" DEAD-box helicase, has been isolated as a multicopy suppressor of rpsB(ts) mutations. Here, we show that expression of a plasmid-borne DeaD/CsdA gene restores both S1 and S2 on the ribosome at the non-permissive temperature in the rpsB(ts) strain, which in turn leads to suppression of the translational defect affecting canonical mRNSa. These data are discussed in terms of a model, wherein DeaD/CsdA is involved in ribosome biogenesis rather than acting directly on mRNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2958.2002.02971.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!