Topology of the Salmonella invasion protein SipB in a model bilayer.

Mol Microbiol

Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, UK.

Published: June 2002

A critical early event in Salmonella infection is entry into intestinal epithelial cells. The Salmonella invasion protein SipB is required for the delivery of bacterial effector proteins into target eukaryotic cells, which subvert signal transduction pathways and cytoskeletal dynamics. SipB inserts into the host plasma membrane during infection, and the purified protein has membrane affinity and heterotypic membrane fusion activity in vitro. We used complementary biochemical and biophysical techniques to investigate the topology of purified SipB in a model membrane. We show that the 593 residue SipB is predominantly alpha-helical in aqueous solution, and that no significant change in secondary structural content accompanies lipid interaction. SipB contains two -helical transmembrane domains (residues 320-353 and 409-427), which insert deeply into the bilayer. Their integration allowed the hydrophilic region between the hydrophobic domains (354-408) to cross the bilayer. SipB membrane integration required both the hydrophobic domains and an additional helical C-terminal region (428-593). Further spectroscopic analysis of these domains in isolation showed that the hydrophobic regions insert obliquely into the bilayer, whereas the C-terminal domain associates with the bilayer surface, tilted parallel to the membrane. The combined data suggest a topological model for membrane-inserted SipB.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2958.2002.02958.xDOI Listing

Publication Analysis

Top Keywords

salmonella invasion
8
invasion protein
8
sipb
8
protein sipb
8
sipb model
8
hydrophobic domains
8
membrane
6
bilayer
5
topology salmonella
4
model bilayer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!