A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Protein engineering modulates the transport properties and ion selectivity of the pores formed by staphylococcal gamma-haemolysins in lipid membranes. | LitMetric

Staphylococcal gamma-haemolysins are bicomponent toxins in a family including other leucocidins and alpha-toxin. Two active toxins are formed combining HlgA or HlgC with HlgB. Both open pores in lipid membranes with conductance, current voltage characteristics and stability similar to alpha-toxin, but different selectivity (cation instead of anion). Structural analogies between gamma-haemolysins and alpha-toxin indicate the presence, at the pore entry, of a conserved region containing four positive charges in alpha-toxin, but either positive or negative in gamma-haemolysins. Four mutants were produced (HlgA D44K, HlgB D47K, HlgB D49K and HlgB D47K/D49K) converting those negative charges to positive in HlgA and HlgB. When all charges were positive, the pores had the same selectivity and conductance as alpha-toxin, suggesting that the cluster may form an entrance electrostatic filter. As mutated HlgC-HlgB pores were less affected, additional charges in the lumen of the pore were changed (HlgB E107Q, HlgB D121N, HlgB T136D and HlgA K108T). Removing a negative charge from the lumen made the selectivity of both HlgA-HlgB D121N and HlgC-HlgB D121N more anionic. Residue D121 of HlgB is compensated by a positive residue (HlgA K108) in the HlgA-HlgB pore, but isolated in the more cation-selective HlgC-HlgB pore. Interestingly, the pore formed by HlgA K108T-HlgB, in which the positive charge of HlgA was removed, was as cation selective as HlgC-HlgB. Meanwhile, the pore formed by HlgA K108T-HlgB D121N, in which the two charge changes compensated, retrieved the properties of wild-type HlgA-HlgB. We conclude that the conductance and selectivity of the gamma-haemolysin pores depend substantially on the presence and location of charged residues in the channel.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2958.2002.02943.xDOI Listing

Publication Analysis

Top Keywords

hlgb
9
staphylococcal gamma-haemolysins
8
lipid membranes
8
hlga
8
charges positive
8
hlgc-hlgb pore
8
pore formed
8
formed hlga
8
hlga k108t-hlgb
8
pore
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!