It was already shown that antifreeze glycoproteins isolated from the blood of fish occurring in circumpolar regions inhibited the growth of ice crystals both in vitro and in vivo. When the spermatozoa were frozen to liquid nitrogen temperature, addition of antifreeze glycoproteins to cryoconserving media made it possible to decrease twofold the concentration of the synthetic cryoprotector dimethylsulfoxide without the loss and even with a certain increase in the number of viable spermatozoa. This effect was observed in the case of combined, rather than separate, addition of the fraction of weakly active (low molecular weight) and active (high molecular weight) antifreeze glycoproteins. Here, we studied the effect of antifreeze glycoproteins on the survival of carp spermatozoa under storage at +4 degrees C for varying periods of time. In the presence of total fraction of low and high molecular weight antifreeze glycoproteins (2 and 10 mg/ml) added in a physiological proportion (3:1), the survival of spermatozoa increase but this increase did not depend linearly on the medium concentration of protein. Low and high molecular weight antifreeze glycoproteins added separately (10 mg/ml) either did not affect or slightly affected the preservation of cells. The hypothermic effect of antifreeze glycoproteins in water was significantly higher than in a medium with salt activator.
Download full-text PDF |
Source |
---|
J Am Chem Soc
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Kowloon 999077, China.
Heterogeneous ice nucleation is a widespread phenomenon in nature. Despite extensive research on ice nucleation near biological antifreeze proteins, a probe for ice nucleation and growth processes at the atomic level is still lacking. Herein, we present simulation evidence of the heterogeneous ice nucleation process on the ice-binding surface (IBS) of the antifreeze protein (TmAFP).
View Article and Find Full Text PDFLangmuir
January 2025
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
The antifreeze mechanism of antifreeze glycoproteins (AFGPs) remains incompletely understood, which limits the design of new antifreeze molecules for practical applications. For instance, the ice growth inhibition of AFGP8 (the shortest AFGPs) is primarily driven by hydrophobic methyl and hydrogen-bonding hydroxyl groups. However, altering the C3-β linkage in the disaccharide moiety of AFGP8, denoted as variant GP8-LacNAc, significantly reduces its antifreeze activity.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China.
This study aims to explore the cryoprotective mechanisms of food-derived hydrolyzed peptides and develop novel cryoprotectants to enhance the quality of frozen foods. scale antifreeze peptides (Ej-AFP) were prepared using enzymatic hydrolysis, which had a 4-fold increase in protection efficiency for surimi compared to traditional cryoprotectants. Furthermore, Ej-AFP was able to control 63.
View Article and Find Full Text PDFTheriogenology
January 2025
Veterinary Clinic for Reproductive Medicine and Neonatology, Justus Liebig-University of Giessen, Germany.
Sperm cryopreservation is crucial in reproductive biotechnology; however, the longevity of frozen and thawed semen is limited by the deterioration of sperm cell integrity. This study aimed to examine the effects of adding antifreeze protein III (AFP III) to the diluent, using samples from eight healthy mature dogs. The ejaculates were divided into aliquots and diluted with a standard Tris-fructose-egg yolk extender containing AFP III at concentrations of 0, 0.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.
Organisms that survive at freezing temperatures produce antifreeze proteins (AFPs) to manage ice nucleation and growth. Inspired by AFPs, a series of synthetic materials have been developed to mimic these proteins in order to avoid the limitations of natural AFPs. Despite their great importance in various antifreeze applications, the relationship between structure and performance of AFP mimics remains unclear, especially whether their molecular charge-specific effects on ice inhibition exist.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!