We examined the roles of vitronectin and plasminogen activator inhibitor-1 (PAI-1) in neointima development. Neointima formation after carotid artery ligation or chemical injury was significantly greater in wild-type mice than in vitronectin-deficient (Vn(-/-)) mice. Vascular smooth muscle cell (VSMC) proliferation did not differ between groups, suggesting that vitronectin promoted neointima development by enhancing VSMC migration. Neointima formation was significantly attenuated in PAI-1-deficient (PAI-1(-/-)) mice compared with control mice. Because intravascular fibrin may function as a provisional matrix for invading VSMCs, we examined potential mechanisms by which vitronectin and PAI-1 regulate fibrin stability and fibrin-VSMC interactions. Inhibition of activated protein C by PAI-1 was markedly attenuated in vitronectin-deficient plasma. The capacity of PAI-1 to inhibit clot lysis was significantly attenuated in vitronectin-deficient plasma, and this effect was not explained simply by the PAI-1-stabilizing properties of vitronectin. The adhesion and spreading of VSMCs were significantly greater on wild-type plasma clots and PAI-1-deficient plasma clots than on vitronectin-deficient plasma clots. We conclude that endogenous levels of vitronectin and PAI-1 enhance neointima formation in response to vascular occlusion or injury. Their effects may be mediated to a significant extent by their capacity to promote intravascular fibrin deposition and by the capacity of vitronectin to enhance VSMC-fibrin interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.atv.0000019360.14554.53DOI Listing

Publication Analysis

Top Keywords

neointima formation
16
vitronectin-deficient plasma
12
plasma clots
12
vitronectin plasminogen
8
plasminogen activator
8
activator inhibitor-1
8
neointima development
8
greater wild-type
8
intravascular fibrin
8
vitronectin pai-1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!