Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Molecular dynamics simulations were performed to simulate Ca(2+)-dependent conformational change of calmodulin (CaM). Simulations of the fully Ca(2+)-bound form of CaM (Holo-CaM) and the Ca(2+)-free form (Apo-CaM) were performed in solution for 4 ns starting from the X-ray crystal structure of Holo-CaM. A striking difference was observed between the trajectories of Holo-CaM and Apo-CaM: the central helix remained straight in the former but became largely bent in the latter. Also, the flexibility of Apo-CaM was higher than that of Holo-CaM. The results indicated that the bound Ca(2+) ions harden the structure of CaM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-5793(02)02853-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!