Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intracellular replication of Brucella requires the VirB complex, which is highly similar to conjugative DNA transfer systems. In this study, we show that Brucella internalizes into macrophages by swimming on the cell surface with generalized membrane ruffling for several minutes, after which the bacteria are enclosed by macropinosomes. Lipid raft-associated molecules such as glycosylphosphatidylinositol (GPI)-anchored proteins, GM1 gangliosides and cholesterol were selectively incorporated into macropinosomes containing Brucella. In contrast, lysosomal glycoprotein LAMP-1 and host cell transmembrane protein CD44 were excluded from the macropinosomes. Removing GPI-anchored proteins from the macrophage surface and cholesterol sequestration markedly inhibited the VirB-dependent macropinocytosis and intracellular replication. Our results suggest that the entry route of Brucella into the macrophage determines the intracellular fate of the bacteria that is modulated by lipid raft microdomains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1462-5822.2002.00195.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!