We investigated a role of nitric oxide (NO) on ionomycin-evoked [3H]GABA release using mouse cerebral cortical neurons. lonomycin dose-dependently released [3H]GABA up to 1 microM. The extent of the release by 0.1 microM ionomycin was in a range similar to that by 30 mM KCl. The ionomycin (0.1 microM)-evoked [3H]GABA release was dose-dependently inhibited by NO synthase inhibitors and hemoglobin, indicating that the ionomycin-evoked [3H]GABA release is mediated through NO formation. The inhibition of cGMP formation by 1H-[1,2,4] oxodizao [4,3-a] quinoxalin-1-one (ODQ), a selective inhibitor for NO-sensitive guanylate cyclase, showed no affects on the ionomycin-evoked [3H]GABA release. Tetrodotoxin and dibucaine significantly suppressed the ionomycin-evoked [3H]GABA release and ionomycin increased fluorescence intensity of bis-oxonol, suggesting the involvement of membrane depolarization in this release. The ionomycin-evoked [3H]GABA release was maximally reduced by about 50% by GABA uptake inhibitors. The concomitant presence of nifedipine and omega-agatoxin VIA (omega-ATX), inhibitors for L- and P/Q-type voltage-dependent calcium channels, respectively, caused the reduction in the ionomycin-evoked release by about 50%. The simultaneous addition of nifedipine, omega-ATX and nipecotic acid completely abolished the release. Although ionomycin released glutamate, (+)-5-methyl-1-,11-dihydro-5H-dibenzo-[a,d]cycloheptan-5,10-imine (MK-801) and 6,7-dinitroquinoxaline-2,3-dione (DNQX) showed no effects on the ionomycin-induced [3H]GABA release. Based on these results, it is concluded that NO formed by ionomycin plays a critical role in ionomycin-evoked [3H]GABA release from the neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1471-4159.2002.00810.xDOI Listing

Publication Analysis

Top Keywords

[3h]gaba release
36
ionomycin-evoked [3h]gaba
28
release
13
[3h]gaba
10
nitric oxide
8
ionomycin-evoked
8
oxide ionomycin-evoked
8
release mouse
8
mouse cerebral
8
cerebral cortical
8

Similar Publications

The spontaneously hypertensive rat (SHR) is an excellent animal model that mimics the behavioral and neurochemical phenotype of attention-deficit/hyperactivity disorder (ADHD). Here, we characterized the striatal GABA transport of SHR and investigated whether caffeine, a non-selective antagonist of adenosine receptors, could influence GABAergic circuitry. For this purpose, ex vivo striatal slices of SHR and Wistar (control strain) on the 35th postnatal day were dissected and incubated with [3H]-GABA to quantify the basal levels of uptake and release.

View Article and Find Full Text PDF

In this work we investigated the effect of nanomolar concentrations of nitric oxide on the release of gamma-aminobutyric acid (GABA) from rat brain nerve terminals using a radioisotope method with [3H]GABA and a spectrofluorimetric method with Ca2+-sensitive probe Fluo-4 AM. It was shown that in the presen­ce of dithiothreitol (DTT), nitric oxide donor SNAP at concentration, in which it produces NO in the nanomolar range, caused Ca2+-independent [3H]GABA release from nerve terminals. The applications of 4-aminopyridine (4-AP) and nipecotic acid (NA), as the inducers of GABA release from vesicular and cytoplasmic pools, showed that the maximum of SNAP/+DTT-induced [3H]GABA release was registered at 10th min of incubation and coincided in time with significant increase (almost double) in NA-induced [3H]GABA release.

View Article and Find Full Text PDF

Airway Epithelial Cell Release of GABA is Regulated by Protein Kinase A.

Lung

June 2016

Department of Anesthesiology, Columbia University, 630 W 168th St., P&S Box 46, New York, NY, 10032, USA.

Introduction: γ-amino butyric acid (GABA) is not only the major inhibitory neurotransmitter in the central nervous system (CNS), but it also plays an important role in the lung, mediating airway smooth muscle relaxation and mucus production. As kinases such as protein kinase A (PKA) are known to regulate the release and reuptake of GABA in the CNS by GABA transporters, we hypothesized that β-agonists would affect GABA release from airway epithelial cells through activation of PKA.

Methods: C57/BL6 mice received a pretreatment of a β-agonist or vehicle (PBS), followed by methacholine or PBS.

View Article and Find Full Text PDF

Histamine H3 receptor activation counteracts adenosine A2A receptor-mediated enhancement of depolarization-evoked [3H]-GABA release from rat globus pallidus synaptosomes.

ACS Chem Neurosci

August 2014

Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN , Av. Instituto Politécnico Nacional 2508, Zacatenco, 07360 México, D.F., México.

High levels of histamine H3 receptors (H3Rs) are found in the globus pallidus (GP), a neuronal nucleus in the basal ganglia involved in the control of motor behavior. By using rat GP isolated nerve terminals (synaptosomes), we studied whether H3R activation modified the previously reported enhancing action of adenosine A2A receptor (A2AR) stimulation on depolarization-evoked [(3)H]-GABA release. At 3 and 10 nM, the A2AR agonist CGS-21680 enhanced [(3)H]-GABA release induced by high K(+) (20 mM) and the effect of 3 nM CGS-21680 was prevented by the A2AR antagonist ZM-241385 (100 nM).

View Article and Find Full Text PDF

Modulation of L-type Ca²⁺-channel function by dopamine is a major determinant of the rate of action potential firing by striatal medium spiny neurons. However, the role of these channels in modulating GABA release by nerve terminals in the basal ganglia is unknown. We found that depolarization-induced [³H]GABA release in both the substantia nigra reticulata and the external globus pallidus (GPe), was depressed by about 50% by either the selective L-channel dihydropyridine blocker nifedipine or the P/Q channel blocker ω-agatoxin TK.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!