Calculations of oxygen transport by red blood cells and hemoglobin solutions in capillaries.

Artif Cells Blood Substit Immobil Biotechnol

Department of Biomedical Engineering, School of Medicine, John Hopkins University, Baltimore, MD 21205, USA.

Published: May 2002

A theoretical model is developed to investigate the influence of hemoglobin-based oxygen carriers (HBOCs) on oxygen transport in capillary-size vessels. A discrete cell model is presented with red blood cells (RBCs) represented in their realistic parachute shape flowing in a single file through a capillary. The model includes the free and Hb-facilitated transport of O2 and Hb-O2 kinetics in the RBC and plasma, diffusion of free O2 in the suspending phase, capillary wall, interstitium and tissue. A constant tissue consumption rate is specified that drives the simultaneous release of O2 from RBC and plasma as the cells traverse the capillary. The model mainly focuses on low capillary hematocrits and studies the effect of free hemoglobin affinity, cooperativity and concentration. The results are expressed in the form of cell and capillary mass transfer coefficients, or inverse transport resistances, that relate the spatially averaged flux of O2 coming out of the RBC and capillary to a driving force for O2 diffusion. The results show that HBOCs at a concentration of 7 g/dl reduce the intracapillary transport resistance by as much as 60% when capillary hematocrit is 0.2. HBOCs with high O2 affinity unload most O2 at the venular end, while those with low affinity supply O2 at the arteriolar end. A higher cooperativity did not favor O2 delivery due to the large variation in the mass transfer coefficient values during O2 unloading. The mass transfer coefficients obtained will be used in simulations of O2 transport in complex capillary networks.

Download full-text PDF

Source
http://dx.doi.org/10.1081/bio-120004338DOI Listing

Publication Analysis

Top Keywords

mass transfer
12
oxygen transport
8
red blood
8
blood cells
8
capillary
8
capillary model
8
rbc plasma
8
transfer coefficients
8
transport
6
calculations oxygen
4

Similar Publications

Simulation of fluid flow with Cuprophan and AN69ST membranes in the dialyzer during hemodialysis.

Biomed Phys Eng Express

January 2025

Ingeniería y Tecnología, Universidad Nacional Autonoma de Mexico Facultad de Estudios Superiores Cuautitlan, Av. 1o de Mayo S/N, Santa María las Torres, Campo Uno, 54740 Cuautitlán Izcalli, Edo. de Méx., Cuautitlan Izcalli, Estado de México, 54740, MEXICO.

Hemodialysis is a crucial procedure for removing toxins and waste from the body when kidneys fail to perform this function effectively. This study addresses the need to improve the efficiency and biocompatibility of membranes used in dialyzers. We simulate fluid flow through two types of membranes, Cuprophan (cellulosic) and AN69ST (synthetic), to understand the complex mechanisms involved and quantify key variables such as pressure, concentration, and flow.

View Article and Find Full Text PDF

Purpose: Mitoxantrone (MTX) is largely restricted in clinical usage due to its significant cardiotoxicity. Multiple studies have shown that an imbalance in the gut-heart axis plays an important role in the development of cardiovascular disease (CVD). We aim to explore the possible correlations between gut microbiota (GM) compositions and cardiometabolic (CM) disorder in MTX-triggered cardiotoxicity mice.

View Article and Find Full Text PDF

Purpose We aimed to report an innovative single-site endoscopic surgery for soft tissue lesions performed at our center. Methods All patients who underwent soft tissue surgery were reviewed. All consecutive patients who underwent single-site endoscopic surgery between September 2019 and March 2024 were included in the study.

View Article and Find Full Text PDF

Unlabelled: Accurate prediction of moisture distributions in wood is among the most critical challenges in timber engineering. Achieving this requires a well-coordinated comparison of experimental methods and simulation tools. While significant progress has been made in developing simulation tools in recent years, a lack of experience with and trust in these tools continues to hinder broader implementation, especially when it comes to free water and its absorption.

View Article and Find Full Text PDF

Evaluating the impact of visceral fat on the outcomes of frozen embryo transfer via bioelectrical impedance analysis.

Front Endocrinol (Lausanne)

January 2025

Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.

Objectives: The increasing prevalence of obesity underscores the need to explore its impact on assisted reproductive technology (ART) outcomes. This study aims to evaluate the association between visceral fat area (VFA), measured by bioelectrical impedance analysis (BIA), and pregnancy outcomes following frozen embryo transfer (FET).

Methods: In this retrospective clinical study, the data of 1,510 patients who underwent FET between April 2022 and April 2023 were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!