Maximum likelihood analysis of gene-based and structure-based process partitions, using mammalian mitochondrial genomes.

Syst Biol

Department of Biological Sciences, Box 210006, University of Cincinnati, Cincinnati, Ohio 45221-0006, USA.

Published: June 1999

Aligned protein-coding genes from 19 completely sequenced mammalian mitochondrial genomes were examined by parsimony and maximum likelihood analyses. Particular attention is given to a comparison between gene-based and structure-based data partitions. Because actual structures are not known for most of the mitochondrially encoded proteins, three different surrogate partitioning schemes were examined, each based on the identity of the consensus amino acid at a specific homologous position. One of the amino-acid-based partitioning schemes gave the highest likelihood, but that scheme was based on concordance with a well-corroborated phylogeny from an earlier parsimony analysis. The gene-based partitioning scheme gave a significantly higher likelihood compared to the only structure-based scheme examined that could be generated without prior assumptions about the phylogeny. Two contrasting phylogenetic inferences were supported by the analyses. Both unpartitioned analyses and analyses in which all partitions were constrained to have identical patterns of branch lengths supported ((Artiodactyla, Cetacea) (Perissodactyla, Carnivora)), whereas all analyses with that constraint relaxed supported (((Artiodactyla, Cetacea) Carnivora) Perissodactyla).

Download full-text PDF

Source
http://dx.doi.org/10.1080/106351599260292DOI Listing

Publication Analysis

Top Keywords

maximum likelihood
8
analysis gene-based
8
gene-based structure-based
8
mammalian mitochondrial
8
mitochondrial genomes
8
partitioning schemes
8
supported artiodactyla
8
artiodactyla cetacea
8
analyses
5
likelihood analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!