We developed a method for the rapid successive cultures of adult rat mature hepatocytes on plastic dishes while avoiding viral transformation or co-culture with other cell lines. This method also allows for culturing adult human mature hepatocytes up to the secondary culture. These can be expected to provide a good source for hepatocyte autotransplantation, and, combined with the previously reported methods for the transplantation of hepatocytes into the spleen, a promising option for the support of liver function after liver resection for cancer without the need for immunosuppressive agents.
Download full-text PDF |
Source |
---|
J Tissue Eng
January 2025
Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Institutes of Health Science, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
The development of advanced models for assessing liver toxicity and drug responses is crucial for personalized medicine and preclinical drug development. 3D bioprinting technology provides opportunities to create human liver models that are suitable for conducting high-throughput screening for liver toxicity. In this study, we fabricated a humanized liver model using human-induced hepatocytes (hiHeps) derived from human fibroblasts via a rapid and efficient reprogramming process.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Biomedical Engineering, University of North Texas, Denton, TX, USA.
Human liver organoids (HLOs) derived from pluripotent stem cells hold potential for disease modeling and high-throughput compound screening due to their architectural and functional resemblance to human liver tissues. However, reproducible, scale-up production of HLOs for high-throughput screening (HTS) presents challenges. These include the high costs of additives and growth factors required for cell differentiation, variability in organoid size and function from batch to batch, suboptimal maturity of HLOs compared to primary hepatocytes, and low assay throughput due to excessive manual processes and the absence of assay-ready plates with HLOs.
View Article and Find Full Text PDFTissue Cell
January 2025
Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
Cyclophosphamide (CP) is an alkylating chemotherapy agent that induces liver toxicity by cross-linking DNA, causing cell apoptosis. While CP is effective in cancer treatment, its side effects on the liver are significant. Recent studies have indicated that antioxidants, such as resveratrol, may reduce these toxic effects.
View Article and Find Full Text PDFGenes Dev
January 2025
Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA;
Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intracellular and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of epithelial splicing regulatory protein 2 (ESRP2) stimulates processing of liver-specific microRNA () to facilitate polyploidization, maturation, and functional competence of hepatocytes.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.
Sodium taurocholate co-transporting polypeptide (NTCP) has been identified as an entry receptor for hepatitis B virus (HBV), but the molecular events of the viral post-endocytosis steps remain obscure. In this study, we discovered that manganese (Mn) could strongly inhibit HBV infection in NTCP-reconstituted HepG2 cells without affecting viral replication. We therefore profiled the antiviral effects of Mn2+ in an attempt to elucidate the regulatory mechanisms involved in early HBV infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!