A-type K+ currents serve important functions in neural and cardiac physiology. The human A-type Kv1.4 channel (hKv1.4) shows fast N-type inactivation when expressed in Xenopus laevis oocytes. We found that intracellular pH (pH(i)) regulated the macroscopic inactivation time constant (tau) and current amplitude (I(peak)), producing a 2-fold change with each pH unit change in the physiologically relevant range of 8.0 to 6.0. These effects of pH(i) were completely abolished by a large deletion in the hKv1.4 N terminus. Site-directed mutagenesis identified a histidine (H16) in the inactivation ball domain as a critical H+ titratable site mediating the pH effects on N-type inactivation between pH 7.0 and 9.0. Substituting this histidine with arginine not only accelerated the time course of macroscopic channel inactivation but also eliminated the H+ effects on hKv1.4. In addition, a glutamic acid (E2) in the ball domain constitutes another H+ titratable site that mediates the pH effects in the more acidic pH range of 5.0 to 7.0. These results suggest that N-type inactivation in hKv1.4 is regulated by pH(i) in the physiologic range through ionization of specific amino acid residues in the ball domain. Such pH(i) effects may represent an important fundamental mechanism for physiological regulation of excitable tissue function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.62.1.127 | DOI Listing |
J Clin Invest
December 2024
Department of Pharmacology and Therapeutics, College of Pharmacy, University of Florida, Gainesville, United States of America.
Front Cell Neurosci
October 2024
Math Department, University of Utah, Salt Lake City, UT, United States.
Voltage gated potassium channels can be composed of either four identical, or different, pore-forming protein subunits. While the voltage gated channels with identical subunits have been extensively studied both physiologically and mathematically, those with multiple subunit types, termed heteromeric channels, have not been. Here we construct, and explore the predictive outputs of, mechanistic models for heteromeric voltage gated potassium channels that possess either N-type or C-type inactivation kinetics.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2024
Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
The Shaker family of voltage-gated K channels has been thought of as an animal-specific ion channel family that diversified in concert with nervous systems. It comprises four functionally independent gene subfamilies (Kv1-4) that encode diverse neuronal K currents. Comparison of animal genomes predicts that only the Kv1 subfamily was present in the animal common ancestor.
View Article and Find Full Text PDFPflugers Arch
October 2024
Laboratory of Neurobiology, Graduate School of Integrated Sciences of Life, Hiroshima University, Kagamiyama 1-7-1, 739-8521, Higashi-Hiroshima, Japan.
The voltage-dependent potassium channels (Kv channels) show several different types of inactivation. N-type inactivation is a fast inactivating mechanism, which is essentially an open pore blockade by the amino-terminal structure of the channel itself or the auxiliary subunit. There are several functionally discriminatable slow inactivation (C-type, P-type, U-type), the mechanism of which is supposed to include rearrangement of the pore region.
View Article and Find Full Text PDFBiophys J
July 2024
Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania. Electronic address:
Here we explore the evolutionary origins of fast N-type ball-and-chain inactivation in Shaker (Kv1) K channels by functionally characterizing Shaker channels from the ctenophore (comb jelly) Mnemiopsis leidyi. Ctenophores are the sister lineage to other animals and Mnemiopsis has >40 Shaker-like K channels, but they have not been functionally characterized. We identified three Mnemiopsis channels (MlShak3-5) with N-type inactivation ball-like sequences at their N termini and functionally expressed them in Xenopus oocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!