Adenylyl cyclase type 5 (AC5) is sensitive to both high and low affinity inhibition by Ca(2+). This property provides a sensitive feedback mechanism of the Ca(2+) entry that is potentiated by cAMP in sources where AC5 is commonly expressed (e.g. myocardium). Remarkably little is known about the molecular mechanism whereby Ca(2+) inhibits AC5. Because previous studies had showed that Ca(2+) antagonized the activation of adenylyl cyclase brought about by Mg(2+), we have now evaluated the Mg(2+)-binding domain in the catalytic site as the potential site of the interaction, using a number of mutations of AC5 with impaired Mg(2+) activation. Mg(2+) activation exerted contrasting effects on the high and low affinity Ca(2+) inhibition. In both wild type and mutants, activation by Mg(2+) decreased the absolute amount of high affinity inhibition without affecting the K(i) value, whereas the K(i) value for low affinity inhibition was decreased. These effects were directly proportional to the sensitivity of the mutants to Mg(2+). Parallel changes were noted in the efficacies of Ca(2+), Sr(2+), and Ba(2+) in the mutant species, suggesting a simple mutation in a shared domain. Strikingly, forskolin, which activates by a mechanism different from Mg(2+), did not modify inhibition by Ca(2+). Deletion of the N terminus and the C1b domain of AC5 and a chimera formed with AC2 confirmed that the catalytic domain alone was responsible for high affinity inhibition. We therefore conclude that both low and high affinity inhibition by Ca(2+) are exerted on different conformations of the Mg(2+)-binding sites in the catalytic domain of AC5.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M112373200DOI Listing

Publication Analysis

Top Keywords

affinity inhibition
20
activation mg2+
12
low affinity
12
inhibition ca2+
12
high affinity
12
ca2+
9
inhibition
8
ca2+ inhibition
8
adenylyl cyclase
8
high low
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!