Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Helicobacter pylori vacuolating cytotoxin (VacA) binds and enters mammalian cells to induce cellular vacuolation. To investigate the quaternary structure of VacA within the intracellular environment where toxin cytotoxicity is elaborated, we employed fluorescence resonance energy transfer (FRET) microscopy. HeLa cells coexpressing full-length and truncated forms of VacA fused to cyan fluorescent protein (CFP) or yellow fluorescent protein (YFP) were analyzed for FRET to indicate direct associations. These studies revealed that VacA-CFP and VacA-YFP interact within vacuolated cells, supporting the belief that monomer associations at an intracellular site are important for the toxin's vacuolating activity. In addition, the two fragments of proteolytically nicked VacA, p37 and p58, interact when coexpressed within mammalian cells. Because p37 and p58 function in trans when expressed separately within mammalian cells, these data suggest that the mechanism by which these two fragments induce vacuolation requires direct association. FRET microscopy also demonstrated interactions between mutant forms of VacA, as well as wild-type VacA with mutant forms of the toxin within vacuolated cells. Finally, a dominant-negative form of the toxin directly associates with wild-type VacA in cells where vacuolation was not detectable, suggesting that the formation of complexes comprising wild-type and dominant-negative forms of toxin acts to block intracellular toxin function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC128058 | PMC |
http://dx.doi.org/10.1128/IAI.70.7.3824-3832.2002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!