Dopaminergic transmission has been suggested to be a primary mechanism mediating reinforcement, withdrawal and craving associated with psychostimulant addiction. Pyscho-stimulants attenuate dopamine transporter (DAT) clearance efficiency, resulting in a net increase in synaptic dopamine levels. Re-uptake rate is determined by the number of functional DAT molecules at the membrane surface. Previous in vivo imaging studies in humans and in vitro studies in post-mortem human brain have demonstrated that chronic cocaine abuse results in a neuroadaptive increase in DAT-binding site density in the limbic striatum. Whether this increase in DAT availability represents an increase in the functional activity of the transporter is unknown. Here, we present evidence that DAT function is elevated by chronic cocaine abuse. The effect of increasing post-mortem interval on the functional viability of synaptosomes was modeled in the baboon brain. Baboon brains sampled under conditions similar to human brain autopsies yielded synaptosomal preparations that were viable up to 24 h post-mortem. Dopamine (DA) uptake was elevated twofold in the ventral striatum from cocaine users as compared to age-matched drug-free control subjects. The levels of [3H]DA uptake were not elevated in victims of excited cocaine delirium, who experienced paranoia and marked agitation prior to death. In keeping with the increase in DAT function, [3H]WIN 35,428 binding was increased in the cocaine users, but not in the victims of excited delirium. These results demonstrate that DA uptake function assayed in cryopreserved human brain synaptosomes is a suitable approach for testing hypotheses of the mechanisms underlying human brain disorders and for studying the actions of addictive drugs in man.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1471-4159.2002.00820.x | DOI Listing |
Comput Biol Med
January 2025
Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
KG Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway.
A potential two-way passage of cells and substances between the brain and skull bone marrow may open for new insights into neurological disease. The arachnoid membrane was traditionally considered to restrict cells and larger molecules in CSF from entering the dura and bone marrow directly. However, new data on exchange between brain and skull bone marrow have recently emerged.
View Article and Find Full Text PDFJ Pharmacokinet Pharmacodyn
January 2025
Global PK/PD/PMx, Eli Lilly and Company, 8 Arlington Square West, Downshire Way, Bracknell, Berkshire, RG12 1PU, UK.
Brain amyloid beta neuritic plaque accumulation is associated with an increased risk of progression to Alzheimer's disease (AD) [Pfeil, J., et al. in Neurobiol Aging 106: 119-129, 2021].
View Article and Find Full Text PDFJ Mol Neurosci
January 2025
Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China.
Ischemic stroke leads to permanent damage to the affected brain tissue, with strict time constraints for effective treatment. Predictive biomarkers demonstrate great potential in the clinical diagnosis of ischemic stroke, significantly enhancing the accuracy of early identification, thereby enabling clinicians to intervene promptly and reduce patient disability and mortality rates. Furthermore, the application of predictive biomarkers facilitates the development of personalized treatment plans tailored to the specific conditions of individual patients, optimizing treatment outcomes and improving prognoses.
View Article and Find Full Text PDFJ Neurol
January 2025
Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!