Active homodyne feedback control can be used to stabilize an interferometer against unwanted phase drifts introduced by, for example, temperature gradients. The technique is commonly used in fiber-optic sensors to maintain the fiber at its most sensitive (quadrature) position. We describe an extension of the technique to introduce stabilized, pi/2-rad phase steps in a full-field interferometer. The technique was implemented in a single-mode, fiber-optic interference fringe projector used for shape measurement and can be easily applied to other fiber- or bulk-optic interferometers, for example, speckle pattern and holographic interferometers. Fresnel reflections from the distal fiber ends undergo a double pass in the fibers and interfere at the fourth port of a directional coupler. The interference intensity (and hence phase) is maintained at quadrature by feedback control to a phase modulator in one of the fiber arms. Stepping between quadrature positions (separated by pi rad for light undergoing a double pass) introduces stabilized phase steps in the projected fringes (separated by pi/2 rad for a single pass). A root-mean-square phase stability of 0.61 mrad in a 50-Hz bandwidth and phase step accuracy of 1.17 mrad were measured.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.41.003348 | DOI Listing |
Sensors (Basel)
November 2024
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
In the field of fringe projection profilometry, phase sensitivity is a critical factor influencing the precision of object measurements. Traditional techniques that employ basic horizontal or vertical fringe projection often do not achieve optimal levels of phase sensitivity. The identification of the fringe angle that exhibits optimal phase sensitivity has been a significant area of research.
View Article and Find Full Text PDFAs a low-cost professional digital light projection device, the DLP4500 have been widely applied in fringe projection profilometry (FPP), for both laboratory and practical application. However, our recent experiments revealed a new hardware-induced projection instability when the projection pattern data exceeds its buffer capacity (48 bits). This phenomenon undermines the measurement accuracy advantage of the phase-shifting (PS) algorithms with large number of shifting steps, and eventually leads unwanted and complicated error to 3D reconstruction.
View Article and Find Full Text PDFThe digital light processing (DLP) projector has been widely used in fringe projection profilometry (FPP). The bit depth of the projected fringes is mostly 8-bit or 1-bit to pursue higher measuring accuracy or speed. In this paper, a bit error model is established to evaluate phase quality of the projected fringes with different bit depths.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!