A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hypoxic vasorelaxation inhibition by organ culture correlates with loss of Kv channels but not Ca(2+) channels. | LitMetric

Hypoxic vasorelaxation inhibition by organ culture correlates with loss of Kv channels but not Ca(2+) channels.

Am J Physiol Heart Circ Physiol

Department of Molecular and Cellular Physiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267-0576, USA.

Published: July 2002

We (Thorne GD, Shimizu S, and Paul RJ. Am J Physiol Cell Physiol 281: C24-C32, 2001) have recently shown that organ culture for 24 h specifically inhibits relaxation to acute hypoxia (95% N(2)-5% CO(2)) in the porcine coronary artery. Here we show similar results in the porcine carotid artery and the rat and mouse aorta. In the coronary artery, part of the inability to relax to hypoxia after organ culture is associated with a concomitant loss in ability to reduce intracellular Ca(2+) concentration ([Ca(2+)](i)) during hypoxia (Thorne GD, Shimizu S, and Paul RJ. Am J Physiol Cell Physiol 281: C24-C32, 2001). To elucidate the mechanisms responsible for the loss of relaxation to hypoxia, we investigated changes in K(+) and Ca(2+) channel activity and gene expression that play key roles in [Ca(2+)](i) regulation in vascular smooth muscle (VSM). Reduced mRNA expression of O(2)-sensitive K(+) channels (Kv1.5 and Kv2.1) was shown by reverse transcriptase-polymerase chain reaction in the rat aorta. In contrast, no change in other expressed voltage-gated K(+) channels (Kv1.2 and Kv1.3) or Ca(2+) channel subtypes was found. Modified K(+) channel expression is supported by functional evidence indicating a reduced response to general K(+) channel activation, by pinacidil, and to specific voltage-dependent K(+) (Kv) channel blockade by 4-aminopyridine. In conclusion, organ culture decreases expression of specific Kv channels. These changes are consistent with altered mechanisms of VSM contractility that may be involved in Ca(2+)-dependent pathways of hypoxia-induced vasodilation.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00569.2001DOI Listing

Publication Analysis

Top Keywords

organ culture
16
thorne shimizu
8
shimizu paul
8
paul physiol
8
physiol cell
8
cell physiol
8
physiol 281
8
281 c24-c32
8
c24-c32 2001
8
coronary artery
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!