Background: Imaging studies have frequently reported volume loss of limbic structures in schizophrenia, yet there appears to be no quantitative data on entorhinal cortex volumes in patients with neuroleptic naive first-episode schizophrenia.
Methods: The volume of the entorhinal cortices of 22 control subjects and 18 patients with neuroleptic-naïve first-episode schizophrenia were measured from magnetic resonance images (MRI) scans using recently designed anatomic criteria for MRI anatomy of the entorhinal cortex.
Results: Smaller entorhinal volumes were found bilaterally in the schizophrenic patients. This volume loss did not correlate with items on the Positive and Negative Syndrome Scale.
Conclusions: These data suggest early involvement of the entorhinal cortex in schizophrenia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-3223(01)01368-3 | DOI Listing |
Brain
January 2025
Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 22184 Lund, Sweden.
The APOE4 allele is the strongest genetic risk factor for sporadic Alzheimer's disease (AD). While APOE4 is strongly associated with amyloid-beta (Aβ), its relationship with tau accumulation is less understood. Studies evaluating the role of APOE4 on tau accumulation showed conflicting results, particularly regarding the independence of these associations from Aβ load.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Department of Neuroscience, University of California, Berkeley, California, USA.
Introduction: Successful cognitive aging is related to both maintaining brain structure and avoiding Alzheimer's disease (AD) pathology, but how these factors interplay is unclear.
Methods: A total of 109 cognitively normal older adults (70+ years old) underwent amyloid beta (Aβ) and tau positron emission tomography (PET) imaging, structural magnetic resonance imaging (MRI), and cognitive testing. Cognitive aging was quantified using the cognitive age gap (CAG), subtracting chronological age from predicted cognitive age.
Neurons located in the layer II of the entorhinal cortex (ECII) are the primary site of pathological tau accumulation and neurodegeneration at preclinical stages of Alzheimer's disease (AD). Exploring the alterations that underlie the early degeneration of these cells is essential to develop therapies that delay disease onset. Here we performed cell-type specific profiling of the EC at the onset of human AD neuropathology.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
School of Systems Science, Beijing Normal University, Beijing, 100875 China.
Hippocampus in the mammalian brain supports navigation by building a cognitive map of the environment. However, only a few studies have investigated cognitive maps in large-scale arenas. To reveal the computational mechanisms underlying the formation of cognitive maps in large-scale environments, we propose a neural network model of the entorhinal-hippocampal neural circuit that integrates both spatial and non-spatial information.
View Article and Find Full Text PDFEnviron Res
January 2025
Département de Psychologie, Université du Québec à Montréal, C.P. 8888 succursale Centre-ville, Montréal, Québec, H3C 3P8, Canada; Centre de Recherche du CHU Sainte-Justine, 3175, Chemin de La Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada. Electronic address:
Exposure to lead, mercury, and polychlorinated biphenyls (PCBs) has been causally linked to spatial memory deficits and hippocampal changes in animal models. The Inuit community in Northern Canada is exposed to higher concentrations of these contaminants compared to the general population. This study aimed to 1) investigate associations between prenatal and current contaminant exposures and medial temporal brain volumes in Inuit late adolescents; 2) examine the relationship between these brain structures and spatial memory; and 3) assess the mediating role of brain structures in the association between contaminant exposure and spatial memory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!