From the end of March to the beginning of December 1999, 199 outbreaks of low pathogenicity avian influenza (LPAI) were diagnosed in the Veneto and Lombardia regions, which are located in the northern part of Italy. The virus responsible for the epidemic was characterized as a type A influenza virus of the H7N1 subtype of low pathogenicity. On the 17th of December, highly pathogenic avian influenza (HPAI) was diagnosed in a meat turkey flock in which 100% mortality was observed in 72 h. The infection spread to the industrial poultry population of northern Italy including chickens, guinea-fowl, quail, pheasants, ducks and ostriches for a total of 413 outbreaks. Over 13 million birds were affected by the epidemic, which caused dramatic economic losses to the Italian poultry industry with severe social and economic implications. The possibility of H7 virus transmission to humans in close contact with the outbreaks was evaluated through a serological survey. Seven hundred and fifty nine sera were collected and tested for the detection of anti-H7 antibodies by means of the micro-neutralization (MN) and single radial haemolysis (SRH) tests. All samples resulted negative. A limited number of clinical samples were also collected for attempted virus isolation with negative results. Current European legislation considers LPAI and HPAI as two completely distinct diseases, not contemplating any compulsory eradication policy for LPAI and requiring eradication for HPAI. Evidence collected during the Italian 1999-2000 epidemic indicates that LPAI due to viruses of the H7 subtype may mutate to HPAI, and, therefore, LPAI caused by viruses of the H5 or H7 subtypes must be controlled to avoid the emergence of HPAI. A reconsideration of the current definition of avian influenza adopted by the EU, could possibly be an aid to avoiding devastating epidemics for the poultry industry in Member States.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0001-706x(02)00057-8 | DOI Listing |
Adv Biotechnol (Singap)
November 2024
State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
The H9N2 subtype of avian influenza virus (AIV) causes severe immunosuppression and high mortality in view of its frequent co-infection with other pathogens, resulting in significant economic losses in the poultry industry. Current vaccines provide suboptimal immune protection against H9N2 AIV owing to antigenic variations, highlighting the urgent need for safe and effective antiviral drugs for the prevention and treatment of this virus. This study aimed to investigate the inhibitory effects of Hypericum japonicum extract on H9N2 AIV.
View Article and Find Full Text PDFVirus Evol
December 2024
ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, BP53, Ploufragan 22440, France.
Swine influenza A viruses (swIAVs) are a major cause of respiratory disease in pigs worldwide, presenting significant economic and health risks. These viruses can reassort, creating new strains with varying pathogenicity and cross-species transmissibility. This study aimed to monitor the genetic and antigenic evolution of swIAV in France from 2019 to 2022.
View Article and Find Full Text PDFA risk assessment framework was developed to evaluate the zoonotic potential of avian influenza (AI), focusing on virus mutations linked to phenotypic traits related to mammalian adaptation identified in the literature. Virus sequences were screened for the presence of these mutations and their geographical, temporal and subtype-specific trends. Spillover events to mammals (including humans) and human seroprevalence studies were also reviewed.
View Article and Find Full Text PDFWhen investigating and controlling outbreaks caused by zoonotic avian influenza viruses (AIV), a One Health approach is key. However, knowledge-sharing on AIV-specific One Health strategies, tools and action plans remains limited across the EU/EEA. It is crucial to establish responsibilities, capacity requirements, and collaboration mechanisms during 'peace time' to enable timely and effective outbreak investigations and management.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
Background: The rapid mutation of avian influenza virus (AIV) poses a significant threat to both the poultry industry and public health. Herein, we have successfully developed an mRNA-LNPs candidate vaccine for H5 subtype highly pathogenic avian influenza and evaluated its immunogenicity and protective efficacy.
Results: In experiments on BALB/c mice, the vaccine candidate elicited strong humoral and a certain cellular immune responses and protected mice from the heterologous AIV challenge.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!