In an earlier publication (Takeuchi et al., Biophys. J. 79 (2000) 2572-2582), we proposed that K(+) channels in intermediate cells within the stria vascularis may play an essential role in the generation of the endocochlear potential (EP), and we presented an extended version of the five-compartment model of the stria vascularis. In search of further evidence supporting the five-compartment model, we studied the effects of Cs(+) added to the perilymph on guinea pig EP. Cs(+) is known as a competitive K(+) channel blocker. Both the scala tympani and the scala vestibuli of four cochlear turns were perfused at a flow rate of 10 microl/min, and the EP was recorded from the second cochlear turn. Cs(+) at 30 mM caused a biphasic change in the EP; the EP increased transiently from a control level of 89.6 mV to 94.8 mV within 10 min, and then decreased to a steady level of 24.5 mV within the next 40 min. We propose that the initial transient increase in the EP results from Cs(+)-mediated blockade of K(+) conductance in the basolateral membrane of hair cells, and that the subsequent EP decrease is due to effects of Cs(+) on the stria vascularis. We believe that Cs(+) in the perilymph is able to access the stria vascularis by being taken up by fibrocytes in the spiral ligament and then being transported to intermediate cells because it is known that Cs(+) is taken up via Na(+),K(+)-ATPase and that gap junctions connect fibrocytes in the spiral ligament to basal cells and basal cells to intermediate cells. To clarify the effect of intracellular Cs(+) on the electrophysiological properties of intermediate cells, these cells were dissociated from guinea pigs and studied by the whole-cell patch-clamp method. Intracellular Cs(+) depolarized intermediate cells in a dose-dependent manner. In addition, efflux of Cs(+) from the intermediate cell was much less than the efflux of K(+). Thus, Cs(+) may accumulate in the intermediate cell, which depolarizes the cell, which in turn decreases the EP. We conclude that the five-compartment model of the stria vascularis can explain the EP decrease caused by Cs(+) in the perilymph.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-5955(01)00412-9 | DOI Listing |
Tissue Cell
December 2024
ENT Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt. Electronic address:
Background: Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide. Current solutions for SNHL, including hearing aids, cochlear implants, and hearing assistive devices, do not provide consistent results and fail to address the underlying pathology of hair cell and ganglion cell damage. Stem cell therapy is a cornerstone in regenerative medicine.
View Article and Find Full Text PDFOtolaryngol Head Neck Surg
December 2024
Department of Otorhinolaryngology, Gazi University Faculty of Medicine, Ankara, Turkey.
Objective: This study aimed to attenuate cochlear inflammation following noise-induced hearing loss by targeting IL-1. We evaluated the effectiveness of IL-1 inhibition through auditory and histological assessments in an animal model.
Study Design: Experimental animal study.
Background: Hearing loss affects over 10% of the global population. Inflammation is a key factor in hearing loss caused by noise, infection, and aging, damaging various hearing-related tissues (e.g.
View Article and Find Full Text PDFIndian Dermatol Online J
September 2024
Department of ENT and Head and Neck Surgery, All India Institute of Medical Sciences, Guntur, Andhra Pradesh, India.
Background: Melanocytes in the hair and melanocytes in the stria vascularis of the inner ear have common origins. Many congenital and acquired disorders of cutaneous pigmentation have auditory abnormalities. There is a paucity of studies on the auditory associations of early graying.
View Article and Find Full Text PDFNeuroradiol J
November 2024
Department of Radiology, Massachusetts General Hospital, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!